The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage.

[1]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[2]  Somnath C. Roy,et al.  Quantification of Blood Clotting Kinetics II: Thromboelastograph Analysis and Measurement of Erythrocyte Sedimentation Rate Using Magnetoelastic Sensors , 2007 .

[3]  Somnath C. Roy,et al.  Quantification of Blood Clotting Kinetics I: Determination of Activated Clotting Times as a Function of Heparin Concentration Using Magnetoelastic Sensors , 2007 .

[4]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[5]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[6]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[7]  J. Hirsch,et al.  The role of whole blood in thrombin generation in contact with various titanium surfaces. , 2007, Biomaterials.

[8]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[9]  A. Kiss,et al.  Recombinant activated coagulation factor VII and bleeding trauma patients. , 2006, The Journal of trauma.

[10]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[11]  Kefeng Zeng,et al.  A rapid highly-sensitive endotoxin detection system. , 2006, Biosensors & bioelectronics.

[12]  S. Schürch,et al.  Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. , 2006, Environmental science & technology.

[13]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[14]  V. Nielsen,et al.  Elastic modulus-based thrombelastographic quantification of plasma clot fibrinolysis with progressive plasminogen activation , 2006, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.

[15]  N. Huang,et al.  Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation , 2006 .

[16]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[17]  Libby G. Puckett,et al.  Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis. , 2005, Biosensors & bioelectronics.

[18]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[19]  K. Lindner,et al.  Gerinnungsmanagement beim Polytrauma , 2005, Der Anaesthesist.

[20]  R. Cabrini,et al.  Titanium transport through the blood stream. An experimental study on rats , 2003, Journal of materials science. Materials in medicine.

[21]  N. Huang,et al.  Hemocompatibility of titanium oxide films. , 2003, Biomaterials.

[22]  Dimitris Kouzoudis,et al.  Monitoring blood coagulation with magnetoelastic sensors. , 2003, Biosensors & bioelectronics.

[23]  Dazhi Yang,et al.  Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement , 2003 .

[24]  M. Maitz,et al.  Blood Compatibility of Titanium Oxides with Various Crystal Structure and Element Doping , 2003, Journal of biomaterials applications.

[25]  K. Lewis,et al.  Factor XIIIA and clot strength after cardiopulmonary bypass , 2001, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.

[26]  J. Lausmaa,et al.  Interactions between human whole blood and modified TiO2-surfaces: influence of surface topography and oxide thickness on leukocyte adhesion and activation. , 2001, Biomaterials.

[27]  S. Herring,et al.  Thromboelastograph Assay for Measuring the Mechanical Strength of Fibrin Sealant Clots , 2000, Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis.

[28]  C A Grimes,et al.  A remote query magnetostrictive viscosity sensor. , 2000, Sensors and actuators. A, Physical.

[29]  Craig A. Grimes,et al.  Magnetoelastic sensors for remote query environmental monitoring , 1999 .

[30]  M. Carr,et al.  Effect of fibrin structure on plasmin-mediated dissolution of plasma clots. , 1995, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.

[31]  M. Carr,et al.  Glycoprotein IIb/IIIa Blockade Inhibits Platelet-mediated Force Development and Reduces Gel Elastic Modulus , 1995, Thrombosis and Haemostasis.

[32]  Trémolet de Lacheisserie,et al.  Magnetostriction : theory and applications of magnetoelasticity , 1993 .

[33]  D. Lide Handbook of Chemistry and Physics , 1992 .

[34]  M. Carr,et al.  Measurement of platelet-mediated force development during plasma clot formation. , 1991, The American journal of the medical sciences.

[35]  A. Quick Hemostasis and blood coagulation. , 1973, Science.

[36]  A. Guyton,et al.  Textbook of Medical Physiology , 1961 .