Time and frequency response of avalanche photodiodes with arbitrary structure

A method is developed for solving the coupled transport equations that describe the electron and hole currents in a double-carrier multiplication (DCM) avalanche photodiode (APD) of arbitrary structure. This solution makes it possible to determine the time and frequency response of the device. The injection can be localized to one or both ends of the multiplication region, or distributed throughout an extended region where multiplication can occur concurrently. The results are applied to conventional APDs with position-dependent carrier ionization rates (e.g., a separate-absorption-grading-multiplication APD) as well as to superlattice multiquantum-well (MQW) structures where the ionizations are localized to bandgap transition regions. The analysis may also be used to determine the dark current and include the carrier trapping at the heterojunction interfaces. The results indicate that previous time-dependent theories only account for the tail of the time response under high-gain conditions and are inaccurate for high-speed devices. >

[1]  Chungho Lee,et al.  Quasistatic Approximation for Semiconductor Avalanches , 1970 .

[2]  K. Takahashi,et al.  New approach to the frequency response analysis of an InGaAs avalanche photodiode , 1988 .

[3]  K. Brennan Comparison of multiquantum well, graded barrier, and doped quantum well GaInAs/AlInAs avalanche photodiodes: A theoretical approach , 1987 .

[4]  Min-Yen Wu A successive decomposition method for the solution of linear time-varying systems , 1981 .

[5]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[6]  Bahaa E. A. Saleh,et al.  Generalized excess noise factor for avalanche photodiodes of arbitrary structure , 1990 .

[7]  B. Pal,et al.  Optical characteristics of a superlattice avalanche photodiode , 1987 .

[8]  G. Lucovsky,et al.  The frequency response of avalanching photodiodes , 1966 .

[9]  J. Geary,et al.  High bandwidth planar InP/InGaAs avalanche photodiodes , 1988 .

[10]  R. B. Emmons,et al.  Avalanche‐Photodiode Frequency Response , 1967 .

[11]  H. C. Hsieh,et al.  Avalanche buildup time of an InP/InGaAsP/InGaAs APD at high gain , 1989 .

[12]  Joe C. Campbell,et al.  Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption "grading" and multiplication regions , 1985 .

[13]  Joe C. Campbell,et al.  Avalanche buildup time of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption, grading, and multiplication regions , 1986 .

[14]  T. Mikawa,et al.  Excess noise design of InP/GaInAsP/GaInAs avalanche photodiodes , 1986 .

[15]  B.E.A. Saleh,et al.  Noise properties and time response of the staircase avalanche photodiode , 1985, IEEE Transactions on Electron Devices.

[16]  T. Mikawa,et al.  Multiplication-dependent frequency responses of InP/InGaAs avalanche photodiode , 1984 .

[17]  Bahaa E. A. Saleh,et al.  Theory of the temporal response of a simple multiquantum-well avalanche photodiode , 1988 .

[18]  I. M. Naqvi,et al.  Effects of time dependence of multiplication process on avalanche noise , 1973 .

[19]  R. E. Hayes,et al.  Simulation studies in both the frequency and time domains of InGaAsP-InP avalanche photodetectors , 1980, IEEE Transactions on Electron Devices.

[20]  B.E.A. Saleh,et al.  Time and frequency response of the conventional avalanche photodiode , 1986, IEEE Transactions on Electron Devices.

[21]  Sethumadhavan Chandrasekhar,et al.  Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[22]  W. Wiegmann,et al.  Time Dependence of Avalanche Processes in Silicon , 1967 .

[23]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[24]  Min-Yen Wu Solution of certain classes of linear time-varying systems , 1980 .

[25]  J. N. Hollenhorst A theory of multiplication noise , 1990 .