The roles of the human major histocompatibility complex and human papillomavirus infection in cervical intraepithelial neoplasia and cervical cancer.

[1]  M. Hammond,et al.  HLA and cancer in South African Indians. , 2008, Tissue antigens.

[2]  M. Hammond,et al.  HLA and cancer in South African Negroes. , 2008, Tissue antigens.

[3]  J. Cuzick,et al.  Susceptibility to human papillomavirus‐associated cervical intra‐epithelial neoplasia is determined by specific HLA DR‐DQ alleles , 1996, International journal of cancer.

[4]  S. Stacey,et al.  A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer , 1996, The Lancet.

[5]  J. Cuzick,et al.  Risk factors for invasive cervix cancer in young women. , 1996, European journal of cancer.

[6]  K. Heeg,et al.  Identification of H‐2Kb Binding and Immunogenic Peptides from Human Papilloma Virus Tumour Antigens E6 and E7 , 1995, Scandinavian journal of immunology.

[7]  M. Feltkamp,et al.  Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. , 1995, Journal of immunotherapy with emphasis on tumor immunology : official journal of the Society for Biological Therapy.

[8]  P. Stern,et al.  The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer , 1995, Nature Medicine.

[9]  C. Wheeler,et al.  Comparison of human leukocyte antigen DR-DQ disease associations found with cervical dysplasia and invasive cervical carcinoma. , 1995, Journal of the National Cancer Institute.

[10]  W. Lancaster,et al.  Association between HLA‐DQB1 alleles and risk for cervical cancer in African‐American women , 1994, International journal of cancer.

[11]  Don C. Wiley,et al.  Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide , 1994, Nature.

[12]  A Sette,et al.  Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. , 1994, Journal of immunology.

[13]  W. Klitz,et al.  HLA DR–DQ associations with cervical carcinoma show papillomavirus–type specificity , 1994, Nature Genetics.

[14]  M. Feltkamp,et al.  Vaccination with cytotoxic T lymphocyte epitope‐containing peptide protects against a tumor induced by human papillomavirus type 16‐transformed cells , 1993, European journal of immunology.

[15]  F. Sinigaglia,et al.  Promiscuous and allele-specific anchors in HLA-DR-binding peptides , 1993, Cell.

[16]  William Arbuthnot Sir Lane,et al.  Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles , 1993, The Journal of experimental medicine.

[17]  P. Stern,et al.  Lack of association of HLA polymorphisms with human papillomavirus-related cervical cancer. , 1993, Human immunology.

[18]  D. Wiley,et al.  Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 , 1993, Nature.

[19]  M. Pawlita,et al.  Cervical intraepithelial neoplasia, cervical carcinoma, and risk for patients with HLA-DQB1 *0602, *301, *0303 alleles , 1993, The Lancet.

[20]  S. Stacey,et al.  Serological responses to HPV 16 in cervical dysplasia and neoplasia: Correlation of antibodies to E6 with cervical cancer , 1993, International journal of cancer.

[21]  C. Vandenvelde,et al.  HLA-DQB1 *03 and cervical intraepithelial neoplasia grades I-III , 1993, The Lancet.

[22]  Y. L. Lin,et al.  Progression from papilloma to carcinoma is accompanied by changes in antibody response to papillomavirus proteins , 1993, Journal of virology.

[23]  Leland Hartwell,et al.  Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells , 1992, Cell.

[24]  Thea D. Tlsty,et al.  Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53 , 1992, Cell.

[25]  Dean R. Madden,et al.  The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC , 1992, Cell.

[26]  G. Wahl,et al.  Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles , 1992, Cell.

[27]  C. Meyers,et al.  Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. , 1992, Science.

[28]  P. Stern,et al.  HLA class II antigen expression in human papillomavirus-associated cervical cancer. , 1992, Cancer research.

[29]  M. Seif,et al.  HLA-DQB103 and cervical intraepithelial neoplasia type III , 1992, The Lancet.

[30]  J. Aplin,et al.  HLA-DQB1-ASTERISK-03 AND CERVICAL INTRAEPITHELIAL NEOPLASIA TYPE-III , 1992 .

[31]  D. Lane,et al.  p53, guardian of the genome , 1992, Nature.

[32]  H. Erlich,et al.  Genetic control of nonresponsiveness to hepatitis B virus vaccine by an extended HLA haplotype , 1992, European journal of immunology.

[33]  D. Lowy,et al.  Mutant p53 can substitute for human papillomavirus type 16 E6 in immortalization of human keratinocytes but does not have E6-associated trans-activation or transforming activity , 1992, Journal of virology.

[34]  D. Galloway,et al.  Induction of cytotoxic T lymphocytes specific for a syngeneic tumor expressing the E6 oncoprotein of human papillomavirus type 16. , 1992, Journal of immunology.

[35]  G. Demers,et al.  The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells , 1992, Journal of virology.

[36]  G. Orth,et al.  Linkage of regression and malignant conversion of rabbit viral papillomas to MHC class II genes , 1992, Nature.

[37]  P. Stern,et al.  HLA antigens and cervical carcinoma , 1992, Nature.

[38]  G. Higgins,et al.  Alzheimer's retraction , 1992, Nature.

[39]  S. Meuer,et al.  Definition of immunogenic determinants of the human papillomavirus type 16 nucleoprotein E7. , 1992, European journal of cancer.

[40]  S. Vermund,et al.  Genital papillomavirus infection and cervical dysplasia—opportunistic complications of hiv infection , 1992, International journal of cancer.

[41]  W. Klitz,et al.  Polymorphism, recombination, and linkage disequilibrium within the HLA class II region. , 1992, Journal of immunology.

[42]  J. Ragoussis,et al.  Map of the human MHC. , 1991, Immunology today.

[43]  J. Best,et al.  Antibody responses to human papillomavirus type‐16 infections , 1991 .

[44]  T. Crawford,et al.  Antibody-mediated clearance of alphavirus infection from neurons. , 1991, Science.

[45]  K. Vousden,et al.  Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation , 1991, Cell.

[46]  D. R. Madden,et al.  Identification of self peptides bound to purified HLA-B27 , 1991, Nature.

[47]  M. Stanley,et al.  Immunocytochemical characterization of large granular lymphocytes in normal cervix and HPV associated disease , 1991, The Journal of pathology.

[48]  C. Thomssen,et al.  High risk of squamous cell carcinoma of the cervix for women with HLA-DQw3 , 1991, Nature.

[49]  A. Kimchi,et al.  Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6 , 1991, Nature.

[50]  K. Münger,et al.  The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[51]  H. Rammensee,et al.  Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules , 1991, Nature.

[52]  J. Convit,et al.  Immunological suppression by human CD8+ T cells is receptor dependent and HLA-DQ restricted. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Lathe,et al.  Immunization against human papillomavirus type 16 tumor cells with recombinant vaccinia viruses expressing E6 and E7. , 1991, Virology.

[54]  L. Crawford,et al.  The induction of cytotoxic T-lymphocyte precursor cells by recombinant vaccinia virus expressing human papillomavirus type 16 L1. , 1991, Virology.

[55]  Arnold J. Levine,et al.  The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 , 1990, Cell.

[56]  A. R. Chang,et al.  Carcinoma in situ of the cervix and its malignant potential. A lesson from New Zealand , 1990, Cytopathology : official journal of the British Society for Clinical Cytology.

[57]  B. Vogelstein,et al.  p53 functions as a cell cycle control protein in osteosarcomas , 1990, Molecular and cellular biology.

[58]  O. Baadsgaard,et al.  The Cellular Immune Response to Human Papillomavirus Infection , 1990, International journal of dermatology.

[59]  T. Ottenhoff,et al.  HLA‐DQ molecules and the control of Mycobacterium leprae‐specific T cell nonresponsiveness in lepromatous leprosy patients , 1990, European journal of immunology.

[60]  R. Lathe,et al.  Vaccinia recombinants expressing early bovine papilloma virus (BPV1) proteins: retardation of BPV1 tumour development. , 1990, Vaccine.

[61]  A. Levine,et al.  Association of human papillomavirus types 16 and 18 E6 proteins with p53. , 1990, Science.

[62]  D. McCance,et al.  Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18 , 1990, Journal of virology.

[63]  J. Rothbard,et al.  Human T cell responses to human papillomavirus type 16 L1 and E6 synthetic peptides: identification of T cell determinants, HLA-DR restriction and virus type specificity. , 1990, The Journal of general virology.

[64]  D. Lowy,et al.  HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. , 1989, The EMBO journal.

[65]  R. Kimmig,et al.  Antibodies against the human papillomavirus type 16 early proteins in human sera: correlation of anti-E7 reactivity with cervical cancer. , 1989, Journal of the National Cancer Institute.

[66]  R. Schlegel,et al.  The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes , 1989, Journal of virology.

[67]  H. Hausen,et al.  Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers , 1989 .

[68]  K. Münger,et al.  The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. , 1989, Science.

[69]  G. Orth,et al.  Abrogated NK‐cell lysis of human papillomavirus (HPV)‐16‐bearing keratinocytes in patients with pre‐cancerous and cancerous HPV‐induced anogenital lesions , 1989, International journal of cancer.

[70]  K. Mclaren,et al.  Human papillomavirus infection and cervical intraepithelial neoplasia in women with renal allografts. , 1989, BMJ.

[71]  J. Murdoch,et al.  Langerhans' cells and subtypes of human papillomavirus in cervical intraepithelial neoplasia. , 1988 .

[72]  D. Lowy,et al.  The E7 open reading frame of human papillomavirus type 16 encodes a transforming gene. , 1988, Oncogene research.

[73]  K. Münger,et al.  The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A , 1988, Cell.

[74]  L. Otvos,et al.  Recognition of hepatitis B surface antigen by human T lymphocytes. Proliferative and cytotoxic responses to a major antigenic determinant defined by synthetic peptides. , 1988, Journal of immunology.

[75]  D M Parkin,et al.  Estimates of the worldwide frequency of sixteen major cancers in 1980 , 1988, International journal of cancer.

[76]  M. A. Saper,et al.  Structure of the human class I histocompatibility antigen, HLA-A2 , 1987, Nature.

[77]  Steven Wolinsky,et al.  Human papillomavirus types 6 and 11 mRNAs from genital condylomata acuminata , 1987, Journal of virology.

[78]  H. Ishikura,et al.  DIFFERENTIAL EXPRESSION OF HLA‐CLASS II ANTIGENS IN THE HUMAN THYMUS: Relative Faucity of Hla‐Dq Antigens in the Thymic Medulla , 1987, Transplantation.

[79]  J. Fraumeni,et al.  Sexual and reproductive risk factors for invasive squamous cell cervical cancer. , 1987, Journal of the National Cancer Institute.

[80]  R. Kurman,et al.  Tissue effects of and host response to human papillomavirus infection. , 1987, Obstetrics and gynecology clinics of North America.

[81]  A. Sedlis,et al.  Human papillomavirus and lower genital neoplasia in renal transplant patients , 1987 .

[82]  M. Braun,et al.  Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines , 1987, Journal of virology.

[83]  M. Campion,et al.  Subpopulations of Langerhans’ cells in cervical neoplasia , 1987 .

[84]  B. Henderson,et al.  Risk factors for invasive cervical cancer among Latinas and non-Latinas in Los Angeles County. , 1986, Journal of the National Cancer Institute.

[85]  Wolfgang Mayer,et al.  Structure and transcription of human papillomavirus sequences in cervical carcinoma cells , 1985, Nature.

[86]  M. Yasukawa,et al.  Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. I. Lysis restricted by HLA class II MB and DR antigens. , 1984, Journal of immunology.

[87]  D. Larhammar,et al.  Mutations and selection in the generation of class II histocompatibility antigen polymorphism. , 1984, The EMBO journal.

[88]  E. Reinherz,et al.  Human cytotoxic T cell clones directed at autologous virus-transformed targets: further evidence for linkage of genetic restriction to T4 and T8 surface glycoproteins. , 1983, Journal of immunology.

[89]  T. Sasazuki,et al.  Suppressor T cells control the HLA-linked low responsiveness to streptococcal antigen in man , 1983, Nature.

[90]  T. Sasazuki,et al.  Association between an HLA haplotype and low responsiveness to schistosomal worm antigen in man. , 1980, The Journal of experimental medicine.

[91]  H. Hausen,et al.  Workshop on Papillomaviruses and Cancer , 1979 .

[92]  T. Sasazuki,et al.  Association between an HLA haplotype and low responsiveness to tetanus toxoid in man , 1978, Nature.

[93]  T. Reid,et al.  Generalized warts and immune deficiency , 1976, The British journal of dermatology.

[94]  K. Schneweis,et al.  HERPES-SIMPLEX-TYPE-2 ANTIBODIES AND HLA-B12 IN CERVICAL CANCER , 1976, The Lancet.

[95]  W. Morison Cell‐mediated immune responses in patients with warts , 1975, The British journal of dermatology.

[96]  J. Tarpley,et al.  Histocompatibility antigens and solid malignant neoplasms. , 1975, Archives of surgery.

[97]  A. Singer,et al.  THE UTERINE CERVIX FROM ADOLESCENCE TO THE MENOPAUSE , 1975, British journal of obstetrics and gynaecology.

[98]  P. Chretien,et al.  Lymphocyte function and HL-A antigen frequency in gynecologic squamous cancer. A preliminary report. , 1974, International surgery.

[99]  M. Strnad,et al.  Cervical cancer in Yugoslavia. II. Epidemiologic factors of possible etiologic significance. , 1974, Journal of the National Cancer Institute.

[100]  P I Terasaki,et al.  HL-A antigens in solid tumors. , 1973, Cancer research.

[101]  Lilienfeld Am,et al.  Carcinoma of the cervix in Jewish women in Israel, 1960-67. An epidemiological study. , 1971, Israel journal of medical sciences.

[102]  J. Fraumeni,et al.  Cancer mortality among nuns: role of marital status in etiology of neoplastic disease in women. , 1969, Journal of the National Cancer Institute.

[103]  L. Breslow,et al.  A study of epidemiologic factors in carcinoma of the uterine cervix. , 1958, Transactions of the Pacific Coast Obstetrical and Gynecological Society.

[104]  F. Guarnieri,et al.  Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. , 1996, Cancer research.

[105]  J. Cuzick,et al.  Association Between HLA DQBl * 03 and Cervical Intra-epithelial Neoplasia , 1995, Molecular medicine.

[106]  H. Koeffler,et al.  p53 mutations in HPV-negative cervical carcinoma. , 1994, Oncogene.

[107]  J. Monaco,et al.  A molecular model of MHC class-I-restricted antigen processing. , 1992, Immunology today.

[108]  L. Koutsky,et al.  Natural history and epidemiological features of genital HPV infection. , 1992, IARC scientific publications.

[109]  H. Ploegh,et al.  Intracellular transport of MHC class II molecules. , 1992, Immunology today.

[110]  L. Chen,et al.  Human papillomavirus type 16 nucleoprotein E7 is a tumor rejection antigen. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[111]  R. L. Miller,et al.  Immediate circumcision of the newborn male. , 1953, American journal of obstetrics and gynecology.