Geometric Modeling of the Z-Surface and Z-Curve of GNSS Signals and Their Solution Techniques

This paper presents a novel geometric model to characterize the zero-crossing surface (<inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-surface) and its z-curve for signals emitted by a pair of Global Navigation Satellite System satellites (<inline-formula> <tex-math notation="LaTeX">${\mathcal{A}}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${\mathcal{B}}$ </tex-math></inline-formula>). The <inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-surface is the surface of points which have zero difference in pseudorange to (<inline-formula> <tex-math notation="LaTeX">${\mathcal{A}}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${\mathcal{B}}$ </tex-math></inline-formula>), and the <inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-curve is the intersection of <inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-surface with the earth’s surface. As a form of time difference of arrival, modeling of the <inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-surface/<inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-curve benefits from the elimination of common error terms (e.g., receiver clock offset) shared by the pair of pseudoranges, so that the resulting model can be used for design of advanced applications, such as timing and positioning integrity monitors and tools for geodetic and atmospheric measurements. The derivation of the <inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-curve starts with the shape modeling of the terrestrial service volume and the earth’s surface. Then, an equi-pseudorange surface of (<inline-formula> <tex-math notation="LaTeX">${\mathcal{A}}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${\mathcal{B}}$ </tex-math></inline-formula>)’s signals can be placed within these shape models. The <inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-curve can be derived as a boundary condition of the <inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-surface. The model can represent the morphing of <inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-curves with respect to the changes in satellite positions and signal propagation delays. As a result, the <inline-formula> <tex-math notation="LaTeX">$z$ </tex-math></inline-formula>-models can be readily generalized into a k-surface and k-curve, where k represents the pseudorange difference between (<inline-formula> <tex-math notation="LaTeX">${\mathcal{A}}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${\mathcal{B}}$ </tex-math></inline-formula>). Solutions for modeling and analysis of the <inline-formula> <tex-math notation="LaTeX">$z(k)$ </tex-math></inline-formula>-surface/curve are based on a system of quadratic Cartesian equations. We propose an algebraic method to parameterize them in terms of geocentric latitude and longitude.

[1]  T. E. Humphreys,et al.  Development and demonstration of a TDOA-based GNSS interference signal localization system , 2012, Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium.

[2]  John F. Raquet,et al.  Broadcast vs. precise GPS ephemerides: a historical perspective , 2002 .

[3]  Durga Misra,et al.  A Synthesizable VHDL Model of the Exact Solution for Three-dimensional Hyperbolic Positioning System , 2002, VLSI Design.

[4]  Gershon Elber,et al.  The intersection of two ruled surfaces , 1999, Comput. Aided Des..

[5]  Willard Marquis,et al.  The GPS Block IIR and IIR-M Broadcast L-band Antenna Panel: Its Pattern and Performance , 2015 .

[6]  Abe Shenitzer,et al.  Quadratic Forms and Matrices: An Introductory Approach , 1964 .

[7]  Joshua Levin,et al.  A parametric algorithm for drawing pictures of solid objects composed of quadric surfaces , 1976, CACM.

[8]  Chandrajit L. Bajaj,et al.  Tracing surface intersections , 1988, Comput. Aided Geom. Des..

[9]  Per Enge,et al.  Statistical characterization of GPS signal-in-space errors , 2011 .

[10]  D. Agnew,et al.  Finding the repeat times of the GPS constellation , 2006 .

[11]  Junlin Yan,et al.  Review of range-based positioning algorithms , 2013, IEEE Aerospace and Electronic Systems Magazine.

[12]  Jyh-Charn Liu,et al.  Order of Pseudoranges (OOP) of GNSS: Spatial Modeling and Analysis , 2015 .

[13]  Ron Goldman,et al.  Geometric Algorithms for Detecting and Calculating All Conic Sections in the Intersection of Any 2 Natural Quadric Surfaces , 1995, CVGIP Graph. Model. Image Process..

[14]  M. Moreau,et al.  The GPS Space Service Volume , 2006 .

[15]  Laurent Rineau,et al.  A generic software design for Delaunay refinement meshing , 2007, Comput. Geom..

[16]  H. S. Hopfield Two- quartic tropospheric refractivity profile for correcting satellite data , 1969 .

[17]  Christophe Macabiau,et al.  Nominal GNSS pseudorange measurement model for vehicular urban applications , 2010, IEEE/ION Position, Location and Navigation Symposium.

[18]  J. S. Warner,et al.  A Simple Demonstration that the Global Positioning System ( GPS ) is Vulnerable to Spoofing , 2012 .

[19]  Andrés Iglesias,et al.  A New Differential Approach for Parametric-Implicit Surface Intersection , 2003, International Conference on Computational Science.

[20]  Alan Bensky,et al.  Wireless positioning technologies and applications , 2008 .

[21]  J. R. Smith,et al.  Coordinate systems and map projections , 1973 .

[22]  Sylvain Lazard,et al.  Near-optimal parameterization of the intersection of quadrics: III. Parameterizing singular intersections , 2008, J. Symb. Comput..

[23]  T. Humphreys,et al.  Assessing the Spoofing Threat: Development of a Portable GPS Civilian Spoofer , 2008 .

[24]  Elliott D. Kaplan Understanding GPS : principles and applications , 1996 .

[25]  Patrick Fell,et al.  Satellite Geodesy—Foundations, Methods, and Applications , 1994 .

[26]  Niilo Sirola Closed-form algorithms in mobile positioning: Myths and misconceptions , 2010, 2010 7th Workshop on Positioning, Navigation and Communication.

[27]  B. T. Fang,et al.  Simple solutions for hyperbolic and related position fixes , 1990 .

[28]  J. Klobuchar Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[29]  Per K. Enge,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[30]  Peter Steigenberger,et al.  Broadcast versus precise ephemerides: a multi-GNSS perspective , 2015, GPS Solutions.

[31]  J. Saastamoinen,et al.  Contributions to the theory of atmospheric refraction , 1972 .

[32]  Frank van Graas,et al.  GPS Orbit and Clock Error Distributions , 2011 .

[33]  Ron Goldman,et al.  Enhancing Levin's method for computing quadric-surface intersections , 2003, Comput. Aided Geom. Des..

[34]  S. Petitjean,et al.  Towards the Robust Intersection of Implicit Quadrics , 2002 .