Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics

Evaluating the representation of processes controlling tropical and subtropical tropospheric relative humidity (RH) in atmospheric general circulation models (GCMs) is crucial to assess the credibility of predicted climate changes. GCMs have long exhibited a moist bias in the tropical and subtropical mid and upper troposphere, which could be due to the mis-representation of cloud processes or of the large-scale circulation, or to excessive diffusion during water vapor transport. The goal of this study is to use observations of the water vapor isotopic ratio to understand the cause of this bias. We compare the three-dimensional distribution of the water vapor isotopic ratio measured from space and ground to that simulated by several versions of the isotopic GCM LMDZ. We show that the combined evaluation of RH and of the water vapor isotopic composition makes it possible to discriminate the most likely cause of RH biases. Models characterized either by an excessive vertical diffusion, an excessive convective detrainment or an underestimated in situ cloud condensation will all produce a moist bias in the free troposphere. However, only an excessive vertical diffusion can lead to a reversed seasonality of the free tropospheric isotopic composition in the subtropics compared to observations. Comparing seven isotopic GCMs suggests that the moist bias found in many GCMs in the mid and upper troposphere most frequently results from an excessive diffusion during vertical water vapor transport. This study demonstrates the added value of water vapor isotopic measurements for interpreting shortcomings in the simulation of RH by climate models. Copyright 2012 by the American Geophysical Union.

[1]  D. S. Sayres,et al.  Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations , 2012 .

[2]  G. Schmidt,et al.  Intraseasonal isotopic variation associated with the Madden-Julian Oscillation , 2011 .

[3]  Jonathon S. Wright,et al.  Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory , 2011 .

[4]  C. Risi,et al.  A strong control of the South American SeeSaw on the intra-seasonal variability of the isotopic composition of precipitation in the Bolivian Andes , 2011 .

[5]  Johannes Schmetz,et al.  Model‐simulated humidity bias in the upper troposphere and its relation to the large‐scale circulation , 2011 .

[6]  Z. Sharp,et al.  Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii. , 2011, Rapid communications in mass spectrometry : RCM.

[7]  Dylan B. A. Jones,et al.  Effects of postcondensation exchange on the isotopic composition of water in the atmosphere , 2010 .

[8]  V. Masson‐Delmotte,et al.  Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling* , 2010 .

[9]  James B. Abshire,et al.  Calibration of the Total Carbon Column Observing Network using aircraft profile data , 2010 .

[10]  M. Kanamitsu,et al.  Regional downscaling for stable water isotopes: A case study of an atmospheric river event , 2010 .

[11]  Jonathon S. Wright,et al.  Diagnosis of zonal mean relative humidity changes in a warmer climate. , 2010 .

[12]  J. Hurley,et al.  An advection-condensation model for subtropical water vapor isotopic ratios , 2010 .

[13]  Sandrine Bony,et al.  Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records , 2010 .

[14]  D. S. Sayres,et al.  Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere , 2010 .

[15]  Y. Tsushima,et al.  Relative humidity changes in a warmer climate , 2010 .

[16]  M. Kiefer,et al.  Tropical dehydration processes constrained by the seasonality of stratospheric deuterated water , 2010 .

[17]  S. Bony,et al.  Evolution of the stable water isotopic composition of the rain sampled along Sahelian squall lines , 2010 .

[18]  By W. Dansga,et al.  Stable isotopes in precipitation , 2010 .

[19]  T. Blumenstock,et al.  The ground-based FTIR network's potential for investigating the atmospheric water cycle , 2009 .

[20]  I. Aben,et al.  Dynamic Processes Governing Lower-Tropospheric HDO/H2O Ratios as Observed from Space and Ground , 2009, Science.

[21]  Jonathon S. Wright,et al.  Influence of condensate evaporation on water vapor and its stable isotopes in a GCM , 2009 .

[22]  P. Valdes,et al.  Stable water isotopes in HadCM3: Isotopic signature of El Nino- Southern Oscillation and the tropical amount effect , 2009 .

[23]  M. Lawrence,et al.  On interpreting studies of tracer transport by deep cumulus convection and its effects on atmospheric chemistry , 2008 .

[24]  S. Bony,et al.  Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 1. Radiative‐convective equilibrium and Tropical Ocean–Global Atmosphere–Coupled Ocean‐Atmosphere Response Experiment (TOGA‐COARE) simulations , 2008 .

[25]  Taikan Oki,et al.  Historical isotope simulation using Reanalysis atmospheric data , 2008 .

[26]  Yohei Matsui,et al.  Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions , 2008 .

[27]  S. Bony,et al.  Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect , 2008 .

[28]  J. Worden,et al.  Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space , 2008 .

[29]  D. Yakir,et al.  Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean , 2008 .

[30]  S. Bony,et al.  Influence of convective processes on the isotopic composition (delta O-18 and delta D) of precipitation and water vapor in the tropics : 2. Physical interpretation of the amount effect - art. no. D19306 , 2008 .

[31]  I. Fung,et al.  “Amount effect” of water isotopes and quantitative analysis of post‐condensation processes , 2008 .

[32]  P. Bernath,et al.  Variability in HDO/H2O abundance ratios in the tropical tropopause layer , 2007 .

[33]  V. John,et al.  Temperature and humidity biases in global climate models and their impact on climate feedbacks , 2007 .

[34]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .

[35]  K. Emanuel,et al.  The vertical resolution sensitivity of simulated equilibrium temperature and water‐vapour profiles , 2007 .

[36]  Gavin A. Schmidt,et al.  Water isotope expressions of intrinsic and forced variability in a coupled ocean‐atmosphere model , 2007 .

[37]  Kevin Bowman,et al.  Importance of rain evaporation and continental convection in the tropical water cycle , 2007, Nature.

[38]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[39]  S. Sherwood,et al.  The General Circulation and Robust Relative Humidity , 2006 .

[40]  Karen L. Smith,et al.  A Climatology of Tropospheric Zonal-Mean Water Vapor Fields and Fluxes in Isentropic Coordinates , 2006 .

[41]  T. Barnett,et al.  Three‐dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite system , 2006 .

[42]  Luis Kornblueh,et al.  Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model , 2006 .

[43]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[44]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[45]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[46]  Moustafa T. Chahine,et al.  Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer , 2006 .

[47]  Pierre Friedlingstein,et al.  The new IPSL climate system model: IPSL-CM4 , 2006 .

[48]  H. Brogniez,et al.  Evaluation of the distribution of subtropical free tropospheric humidity in AMIP‐2 simulations using METEOSAT water vapor channel data , 2005 .

[49]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[50]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[51]  D. Ehhalt Vertical profiles of HDO/H 2 O in the troposphere , 2005 .

[52]  R. Martin,et al.  The Vertical Structure of Tropical Convection and Its Impact on the Budgets of Water Vapor and Ozone , 2005 .

[53]  I. Fung,et al.  Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model , 2004 .

[54]  William B. Rossow,et al.  Characterizing Tropical Cirrus Life Cycle, Evolution, and Interaction with Upper-Tropospheric Water Vapor Using Lagrangian Trajectory Analysis of Satellite Observations , 2004 .

[55]  Pedro M. M. Soares,et al.  Sensitivity of moist convection to environmental humidity , 2004 .

[56]  J. Grandpeix,et al.  Improved mixing representation in Emanuel's convection scheme , 2004 .

[57]  Kenneth P. Bowman,et al.  Stable isotopic composition of water vapor in the tropics , 2004 .

[58]  S. Bony,et al.  On dynamic and thermodynamic components of cloud changes , 2004 .

[59]  A. Heymsfield,et al.  Water Isotope Ratios D/H, 18O/16O, 17O/16O in and out of Clouds Map Dehydration Pathways , 2003, Science.

[60]  M. Ringer,et al.  Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water‐vapour channel radiances , 2003 .

[61]  Brian E. Mapes,et al.  Bimodality in tropical water vapour , 2003 .

[62]  Donald J. DePaolo,et al.  Isotopic fractionation of water during evaporation , 2003 .

[63]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[64]  David B. Parsons,et al.  Recovery Processes and Factors Limiting Cloud-Top Height following the Arrival of a Dry Intrusion Observed during TOGA COARE , 2002 .

[65]  D. Pollard,et al.  Simulation of stable water isotope variations by the GENESIS GCM for modern conditions , 2002 .

[66]  Kerry Emanuel,et al.  A Parameterization of the Cloudiness Associated with Cumulus Convection; Evaluation Using TOGA COARE Data , 2001 .

[67]  V. Pope,et al.  The representation of water vapor and its dependence on vertical resolution in the Hadley Centre Climate Model , 2001 .

[68]  Christopher S. Bretherton,et al.  Modeling Tropical Precipitation in a Single Column , 2000 .

[69]  Alan K. Betts,et al.  Idealized Model for Equilibrium Boundary Layer over Land , 2000 .

[70]  S. Sherwood,et al.  Simulations of tropical upper tropospheric humidity , 2000 .

[71]  Kerry Emanuel,et al.  Development and Evaluation of a Convection Scheme for Use in Climate Models , 1999 .

[72]  Frédéric Hourdin,et al.  The Use of Finite-Volume Methods for Atmospheric Advection of Trace Species. Part I: Test of Various Formulations in a General Circulation Model , 1999 .

[73]  R. Pierrehumbert,et al.  Evidence for control of Atlantic subtropical humidity by large scale advection , 1998 .

[74]  R. Rood,et al.  Upper tropospheric water vapor from GEOS reanalysis and UARS , 1998 .

[75]  M. Heimann,et al.  Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years , 1998 .

[76]  R. Pierrehumbert Lateral mixing as a source of subtropical water vapor , 1998 .

[77]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[78]  J. Morcrette,et al.  Direct comparison of meteosat water vapor channel data and general circulation model results , 1997 .

[79]  S. Sherwood Maintenance of the Free-Tropospheric Tropical Water Vapor Distribution. Part II: Simulation by Large-Scale Advection , 1996 .

[80]  S. Sherwood Maintenance of the Free-Tropospheric Tropical Water Vapor Distribution. Part I: Clear Regime Budget , 1996 .

[81]  F. Irion,et al.  ATMOS stratospheric deuterated water and implications for troposphere‐stratosphere transport , 1996 .

[82]  E. Roeckner,et al.  A comparison of satellite observations and model simulations of column-integrated moisture and upper-tropospheric humidity , 1996 .

[83]  S. Argentini,et al.  Role of land surface in controlling daytime cloud amount: Two case studies in the GCIP‐SW area , 1996 .

[84]  Richard B. Rood,et al.  Upper-tropospheric water vapor from UARS MLS , 1995 .

[85]  E. Salathe,et al.  Variability of Moisture in the Upper Troposphere As Inferred from TOVS Satellite Observations and the ECMWF Model Analyses in 1989 , 1995 .

[86]  Kerry Emanuel,et al.  On large-scale circulations in convecting atmospheres , 1994 .

[87]  Francis P. Bretherton,et al.  Evaluation of water vapor distribution in general circulation models using satellite observations , 1994 .

[88]  W. Gates AMIP: The Atmospheric Model Intercomparison Project. , 1992 .

[89]  K. Emanuel A Scheme for Representing Cumulus Convection in Large-Scale Models , 1991 .

[90]  J. Jouzel,et al.  Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation , 1984 .

[91]  J. Slingo A cloud parametrization scheme derived from GATE data for use with a numerical model , 1980 .

[92]  L. Merlivat Molecular diffusivities of H2 16O,HD16O, and H2 18O in gases , 1978 .

[93]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[94]  M. Stewart Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes , 1975 .

[95]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[96]  M. Majoube Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur , 1971 .

[97]  M. Majoube Fractionnement en 180 entre la glace et la vapeur d'eau , 1971 .

[98]  L. Merlivat,et al.  Fractionnement isotopique lors des changements d‘état solide-vapeur et liquide-vapeur de l'eau à des températures inférieures à 0°C , 1967 .

[99]  W. Dansgaard Stable isotopes in precipitation , 1964 .

[100]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.