Graphene, plasmons and transformation optics

Here we study subwavelength gratings for coupling into graphene plasmons by means of an an- alytical model based on transformation optics that is not limited to very shallow gratings. We consider gratings that consist of a periodic modulation of the charge density in the graphene sheet, and gratings formed by this conductivity modulation together with a dielectric grating placed in close vicinity of the graphene. Explicit expressions for the dispersion relation of the plasmon po- laritons supported by the system, and reflectance and transmittance under plane wave illumination are given. We discuss the conditions for maximising the coupling between incident radiation and plasmons in the graphene, finding the optimal modulation strength for a conductivity grating.

[1]  G. Navickaite,et al.  Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns , 2014, Science.

[2]  S. Anantha Ramakrishna,et al.  Near-field lenses in two dimensions , 2002 .

[3]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[4]  F. García-Vidal,et al.  Transformation optics for plasmonics. , 2010, Nano letters.

[5]  T. Low,et al.  Anomalous reflection phase of graphene plasmons and its influence on resonators , 2014, 1406.7335.

[6]  Stefan A. Maier,et al.  Designing plasmonic gratings with transformation optics , 2015 .

[7]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[8]  F. J. Garcia-Vidal,et al.  Fields radiated by a nanoemitter in a graphene sheet , 2011, 1104.3558.

[9]  N. Peres,et al.  Graphene-based polaritonic crystal , 2012, 1204.3900.

[10]  D. R. Smith,et al.  Transformation Optics and Subwavelength Control of Light , 2012, Science.

[11]  Stefan A. Maier,et al.  Transformation optics and hidden symmetries , 2014 .

[12]  U. Leonhardt,et al.  Transformation Optics and the Geometry of Light , 2008, 0805.4778.

[13]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[14]  V. Ryzhii,et al.  Terahertz surface plasmons in optically pumped graphene structures , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[16]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[17]  Xiang Zhang,et al.  Transformational plasmon optics. , 2010, Nano letters.

[18]  F. Guinea,et al.  Resonant plasmonic effects in periodic graphene antidot arrays , 2012, 1206.2163.

[19]  L. Martín-Moreno,et al.  Analytical solution for the diffraction of an electromagnetic wave by a graphene grating , 2013, 1307.0310.

[20]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[21]  Shung Dielectric function and plasmon structure of stage-1 intercalated graphite. , 1986, Physical review. B, Condensed matter.

[22]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006 .

[23]  Dang Yuan Lei,et al.  Interaction between plasmonic nanoparticles revisited with transformation optics. , 2010, Physical review letters.

[24]  Roland Schinzinger,et al.  Conformal Mapping: Methods and Applications , 1991 .

[25]  Yu Luo,et al.  van der Waals interactions at the nanoscale: The effects of nonlocality , 2014, Proceedings of the National Academy of Sciences.

[26]  F. J. Garcia-Vidal,et al.  Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons , 2011, 1201.0191.

[27]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[28]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[29]  A. Ward,et al.  Refraction and geometry in Maxwell's equations , 1996 .

[30]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[31]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[32]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[33]  Extraordinary absorption of decorated undoped graphene. , 2013, Physical review letters.

[34]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[35]  F. Cacialli Journal of Physics Condensed Matter: Preface , 2002 .

[36]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[37]  Oskar Vafek Thermoplasma polariton within scaling theory of single-layer graphene. , 2006, Physical review letters.

[38]  Stefan A. Maier,et al.  Harvesting light with transformation optics , 2013, Science China Information Sciences.

[39]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[40]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[41]  Yu Luo,et al.  Capturing photons with transformation optics , 2013, Nature Physics.

[42]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.