Numerical evidance for the non-existing of solutions of the equations desribing rotational fiber spinning
暂无分享,去创建一个
Abstract. The stationary, isothermal rotational spinning process of fibers is considered. The investigations are concerned with the case of large Reynolds (± = 3/Re ? 1) and small Rossby numbers (\\\" ? 1). Modelling the fibers as a Newtonian fluid and applying slender body approximations, the process is described by a two–point boundary value problem of ODEs. The involved quantities are the coordinates of the fiber’s centerline, the fluid velocity and viscous stress. The inviscid case ± = 0 is discussed as a reference case. For the viscous case ± > 0 numerical simulations are carried out. Transfering some properties of the inviscid limit to the viscous case, analytical bounds for the initial viscous stress of the fiber are obtained. A good agreement with the numerical results is found. These bounds give strong evidence, that for ± > 3\\\"2 no physical relevant solution can exist. A possible interpretation of the above coupling of ± and \\\" related to the die–swell phenomenon is given.