Ro-vibronic transition intensities for triatomic molecules from the exact kinetic energy operator; electronic spectrum for the C̃ 1B2 ← X̃ 1A1 transition in SO2.

A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C̃ 1B2 ← X̃ 1A1 ro-vibronic transitions of SO2. Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.

[1]  R. Freedman,et al.  Data for: Ames-2016 Line Lists for 13 Isotopologues of CO2: Updates, Consistency, and Remaining Issues , 2017 .

[2]  M. Birk,et al.  Accurate line intensities for water transitions in the infrared: Comparison of theory and experiment , 2017 .

[3]  J. Tennyson,et al.  Room temperature line lists for deuterated water , 2017 .

[4]  J. Tennyson,et al.  Highly accurate intensity factors of pure CO2 lines near 2 μm. , 2017, The Journal of chemical physics.

[5]  J. Tennyson,et al.  Laboratory spectra of hot molecules: data needs for hot super-Earth exoplanets , 2017, 1705.07198.

[6]  J. Tennyson,et al.  Room temperature line lists for CO2 symmetric isotopologues with ab initio computed intensities , 2017, 1701.08267.

[7]  Hua Guo,et al.  Photoabsorption Assignments for the C̃1B2 ← X̃1A1 Vibronic Transitions of SO2, Using New Ab Initio Potential Energy and Transition Dipole Surfaces. , 2017, The journal of physical chemistry. A.

[8]  Jonathan Tennyson,et al.  The ExoMol project: Software for computing large molecular line lists , 2016, 1607.01220.

[9]  Laura K. McKemmish,et al.  ExoMol line lists – XVIII. The high-temperature spectrum of VO , 2016, 1609.06120.

[10]  H. Mustroph Potential-Energy Surfaces, the Born-Oppenheimer Approximations, and the Franck-Condon Principle: Back to the Roots. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  Jonathan Tennyson,et al.  The 2015 edition of the GEISA spectroscopic database , 2016 .

[12]  T. Steimle,et al.  Detection and characterization of singly deuterated silylene, SiHD, via optical spectroscopy. , 2016, The Journal of chemical physics.

[13]  Hua Guo,et al.  New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X̃(1)A1 and excited C̃(1)B2(2(1)A(')) states of SO2. , 2016, The Journal of chemical physics.

[14]  G. B. Park,et al.  Observation of b2 symmetry vibrational levels of the SO2 C̃ (1)B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants. , 2016, The Journal of chemical physics.

[15]  G. B. Park,et al.  The rotation-vibration structure of the SO2 C̃(1)B2 state explained by a new internal coordinate force field. , 2016, The Journal of chemical physics.

[16]  G. B. Park,et al.  The origin of unequal bond lengths in the C̃ (1)B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure. , 2016, The Journal of chemical physics.

[17]  J. Tennyson,et al.  ExoMol molecular line lists - XVII. The rotation-vibration spectrum of hot SO3 , 2016, 1603.04065.

[18]  Sergei N. Yurchenko,et al.  Duo: A general program for calculating spectra of diatomic molecules , 2016, Comput. Phys. Commun..

[19]  S. Tashkun,et al.  A room temperature CO2 line list with ab initio computed intensities , 2016, 1601.05334.

[20]  P. Jensen,et al.  Spectroscopic Potential Energy Surfaces for the 1 (2)A', 2 (2)A', and 1 (2)A″ Electronic States of BeOH. , 2015, The journal of physical chemistry. A.

[21]  Guntram Rauhut,et al.  Comparison of methods for calculating Franck–Condon factors beyond the harmonic approximation: how important are Duschinsky rotations? , 2015 .

[22]  U. Nagashima,et al.  Ro-vibrational properties of FeCO in the X ̃ 3 Σ - and a ̃ 5 Σ - electronic states: A computational molecular spectroscopy study , 2015 .

[23]  J. Tennyson,et al.  ExoMol molecular line lists – XI. The spectrum of nitric acid , 2015, 1507.02276.

[24]  J. Hodges,et al.  High-Accuracy CO(2) Line Intensities Determined from Theory and Experiment. , 2015, Physical review letters.

[25]  C. Hill,et al.  ExoMol molecular line lists - XIII: The spectrum of CaO , 2015, 1512.08987.

[26]  Timothy J. Lee,et al.  Empirical infrared line lists for five SO2 isotopologues: 32/33/34/36S16O2 and 32S18O2 , 2015 .

[27]  J. Tennyson,et al.  The calculated rovibronic spectrum of scandium hydride, ScH , 2015, 1504.04051.

[28]  H. Meyer,et al.  A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide. , 2014, The Journal of chemical physics.

[29]  J. Tennyson Vibration–rotation transition dipoles from first principles , 2014 .

[30]  Timothy J. Lee,et al.  Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for ³²S¹⁶O₂ up to 8000 cm⁻¹. , 2014, The Journal of chemical physics.

[31]  O. Ulenikov,et al.  Re-analysis of the (100), (001), and (020) rotational structure of SO2 on the basis of high resolution FTIR spectra , 2013 .

[32]  T. Encrenaz,et al.  Spectroscopy of planetary atmospheres in our Galaxy , 2013 .

[33]  Andrew R. Whitehill,et al.  Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth’s atmosphere , 2013, Proceedings of the National Academy of Sciences.

[34]  Hua Guo,et al.  Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO2. , 2013, The Journal of chemical physics.

[35]  P. Jensen,et al.  The predicted spectrum and singlet-triplet interaction of the hypermetallic molecule SrOSr. , 2013, The journal of physical chemistry. A.

[36]  J. Tennyson,et al.  A computed room temperature line list for phosphine , 2013, 1302.1997.

[37]  J. V. Gent,et al.  Volcanic SO 2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS , 2012 .

[38]  J. Tennyson,et al.  Line lists for H218O and H217O based on empirical line positions and ab initio intensities , 2012 .

[39]  J. Tennyson,et al.  Global spectroscopy of the water monomer , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[41]  P. Smith,et al.  Correction to “High‐resolution photoabsorption cross‐section measurements of SO2 at 198 K from 213 to 325 nm” , 2011 .

[42]  J. Hornkohl,et al.  Computation of AlO B2Σ+ → X2Σ+ emission spectra. , 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[43]  Xiong Liu,et al.  Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME‐2) using an optimal estimation approach: Algorithm and initial validation , 2011 .

[44]  P. Jensen,et al.  Large amplitude bending motion in CsOH, studied through ab initio-based three-dimensional potential energy functions , 2010 .

[45]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[46]  J. Tennyson,et al.  First-principles prediction and partial characterization of the vibrational states of water up to dissociation , 2010 .

[47]  High sensitivity CW-cavity ring down spectroscopy of 12CO2 near 1.35 μm (II): New observations and line intensities modeling , 2010 .

[48]  S. Nanbu,et al.  Theoretical studies of absorption cross sections for the C (1)B(2)-X (1)A(1) system of sulfur dioxide and isotope effects. , 2010, The Journal of chemical physics.

[49]  P. Bernath,et al.  IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers , 2013 .

[50]  O. Ulenikov,et al.  High resolution study of the 3ν1 band of SO2 , 2009 .

[51]  T. Carrington,et al.  A discrete variable representation method for studying the rovibrational quantum dynamics of molecules with more than three atoms. , 2009, The Journal of chemical physics.

[52]  S. Tashkun,et al.  New CW-CRDS measurements and global modeling of 12C16O2 absolute line intensities in the 1.6 μm region , 2008 .

[53]  Naohiro Yoshida,et al.  High-precision spectroscopy of 32S, 33S, and 34S sulfur dioxide : Ultraviolet absorption cross sections and isotope effects , 2008 .

[54]  P. Jensen,et al.  The double Renner effect in the X(2)A" and A(2)A' electronic states of HO(2). , 2008, The Journal of chemical physics.

[55]  G. Worth,et al.  The photodissociation of ozone: a quasi-classical approach to a quantum dynamics problem. , 2007, Journal of molecular graphics & modelling.

[56]  T. Carrington,et al.  Discrete‐Variable Representations and their Utilization , 2007 .

[57]  P. Jensen,et al.  Theoretical study of the double Renner effect for A2Pi MgNC/MgCN: higher excited rovibrational states. , 2007, The Journal of chemical physics.

[58]  L. Ziurys Interstellar Chemistry Special Feature: The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life , 2006 .

[59]  Kai Yang,et al.  Band residual difference algorithm for retrieval of SO/sub 2/ from the aura ozone monitoring instrument (OMI) , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[61]  N. Handy,et al.  A variational method for the calculation of spin–rovibronic energy levels of any triatomic molecule in an electronic triplet state , 2005 .

[62]  Jonathan Tennyson,et al.  DVR3D: a program suite for the calculation of rotation-vibration spectra of triatomic molecules , 2004, Comput. Phys. Commun..

[63]  S. Carter,et al.  Theoretical determination of the spin-rovibronic spectrum of the Ã2Π←X̃2Σ+ electronic transition of MgNC , 2003 .

[64]  Anne P. Thorne,et al.  High-resolution photoabsorption cross section measurements of SO2, 2: 220 to 325 nm at 295 K , 2003 .

[65]  P. Jensen,et al.  An ab Initio Study of the 2? State and the 2?? X~ 2S + Electronic Transition of MgNC , 2002 .

[66]  Edmond P. F. Lee,et al.  Simulation of ù B₁→ X˜¹A₁CF₂single vibronic level emissions : including anharmonic and Duschinsky effects , 2001 .

[67]  K. Spears,et al.  Ab Initio Computation of the Duschinsky Mixing of Vibrations and Nonlinear Effects , 2001 .

[68]  N. Handy,et al.  A variational method for the calculation of spin-rovibronic energy levels of triatomic molecules with three interacting electronic states , 2000 .

[69]  Hua Guo,et al.  Absorption and resonance emission spectra of SO2(X̃1A1/C̃1B2) calculated from ab initio potential energy and transition dipole moment surfaces , 2000 .

[70]  C. Y. Robert Wu,et al.  Measurements of High-, Room-, and Low-Temperature Photoabsorption Cross Sections of SO2 in the 2080- to 2950-Å Region, with Application to Io , 2000 .

[71]  Hua Guo,et al.  A combined experimental and theoretical study of resonance emission spectra of SO2(C̃) , 2000 .

[72]  S. Tashkun,et al.  13C16O2: Global Treatment of Vibrational–Rotational Spectra and First Observation of the 2ν1 + 5ν3 and ν1 + 2ν2 + 5ν3 Absorption Bands , 2000 .

[73]  P. Jensen,et al.  The calculation of the vibrational states of SO2 in the C̃1B2 electronic state up to the SO(3Σ−)+O(3P) dissociation limit , 2000 .

[74]  K. Yamanouchi,et al.  Vibrational propensity in the predissociation rate of SO2(C̃1B2) by two types of nodal patterns in vibrational wavefunctions , 1998 .

[75]  P. Ray,et al.  Resonance emission spectroscopy of predissociating SO2 C̃(1 1B2): Coupling with a repulsive 1A1 state near 200 nm , 1998 .

[76]  Michael A. Collins,et al.  POLYATOMIC MOLECULAR POTENTIAL ENERGY SURFACES BY INTERPOLATION IN LOCAL INTERNAL COORDINATES , 1998 .

[77]  Schilke,et al.  33SO2: Interstellar Identification and Laboratory Measurements , 1997, Journal of molecular spectroscopy.

[78]  K. Yamanouchi,et al.  Algebraic approach to vibrationally highly excited states of SO2. Vibrational wavefunctions from spectroscopy , 1997 .

[79]  A. H. Wapstra,et al.  The 1995 update to the atomic mass evaluation , 1995 .

[80]  K. Yamanouchi,et al.  Laser induced fluorescence spectroscopy of the C̃1B2X̃1A1 band of jet-cooled SO2: rotational and vibrational analyses in the 235-210 nm region , 1995 .

[81]  P. Jensen,et al.  A Treatment of the Renner Effect Using the MORBID Hamiltonian , 1995 .

[82]  D. Jonas,et al.  Axis-switching transitions and the stimulated emission pumping spectrum of HCN , 1992 .

[83]  J. Tennyson,et al.  Dicretization to avoid singularities in vibration–rotation Hamiltonians: A bisector embedding for AB2 triatomics , 1992 .

[84]  Jonathan Tennyson,et al.  A general treatment of vibration‐rotation coordinates for triatomic molecules , 1991 .

[85]  A. Wodtke,et al.  Vibrational structure of hydrogen cyanide up to 18 900 cm −1 , 1990 .

[86]  John C. Light,et al.  Theoretical Methods for Rovibrational States of Floppy Molecules , 1989 .

[87]  J. Tennyson,et al.  An effective computational approach to the calculation of the vibration-rotation spectra of triatomic molecules , 1988 .

[88]  Bruce R. Johnson,et al.  Adiabatic separations of stretching and bending vibrations: Application to H2O , 1986 .

[89]  J. Tennyson TRIATOM, SELECT and ROTLEV ― for the calculation of the ro-vibrational levels of triatomic molecules , 1986 .

[90]  J. Tennyson,et al.  Highly rotationally excited states of floppy molecules: H2D+ with J ⩽ 20 , 1986 .

[91]  K. Yoshino,et al.  HIGH RESOLUTION ABSORPTION CROSS SECTION MEASUREMENTS OF $SO_{2}$ AT 213 K IN THE WAVELENGTH REGION 172-240 nm , 1984 .

[92]  J. Tennyson,et al.  The ab initio calculation of the vibrational‐rotational spectrum of triatomic systems in the close‐coupling approach, with KCN and H2Ne as examples , 1982 .

[93]  J. T. Hougen,et al.  ANOMALOUS ROTATIONAL LINE INTENSITIES IN ELECTRONIC TRANSITIONS OF POLYATOMIC MOLECULES: AXIS-SWITCHING , 1965 .