Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML

[1]  I. Weissman,et al.  Sleep disruption impairs hematopoietic stem cell transplantation in mice , 2015, Nature Communications.

[2]  E. Passegué,et al.  Normal and leukemic stem cell niches: insights and therapeutic opportunities. , 2015, Cell stem cell.

[3]  Yue Wang,et al.  A Long Noncoding RNA Perturbs the Circadian Rhythm of Hepatoma Cells to Facilitate Hepatocarcinogenesis , 2015, Neoplasia.

[4]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[5]  Aviv Regev,et al.  Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing , 2014, Nature Biotechnology.

[6]  M. Zang,et al.  Induction of the CLOCK Gene by E2-ERα Signaling Promotes the Proliferation of Breast Cancer Cells , 2014, PloS one.

[7]  Michael G. Kharas,et al.  Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia , 2014, The Journal of experimental medicine.

[8]  H. Nakauchi,et al.  Clock gene Bmal1 is dispensable for intrinsic properties of murine hematopoietic stem cells , 2014, Journal of Negative Results in BioMedicine.

[9]  J. Takahashi,et al.  Molecular architecture of the mammalian circadian clock. , 2014, Trends in cell biology.

[10]  Fatima Al-Shahrour,et al.  Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. , 2013, Nature chemical biology.

[11]  M. Antoch,et al.  Deficiency in PER proteins has no effect on the rate of spontaneous and radiation-induced carcinogenesis , 2013, Cell cycle.

[12]  A. Chawla,et al.  Circadian Gene Bmal1 Regulates Diurnal Oscillations of Ly6Chi Inflammatory Monocytes , 2013, Science.

[13]  Xiaozhong Peng,et al.  Circadian gene Clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor‐suppressive miR‐124 , 2013, FEBS letters.

[14]  Fatima Al-Shahrour,et al.  In Vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. , 2013, Cancer cell.

[15]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[16]  C. Weber,et al.  Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance , 2013, Cell.

[17]  Douglas J. Kojetin,et al.  Nuclear Receptors and Their Selective Pharmacologic Modulators , 2013, Pharmacological Reviews.

[18]  J. Minna,et al.  The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma , 2012, International journal of cancer.

[19]  J. Takahashi,et al.  Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals , 2012, Science.

[20]  J. Helden,et al.  A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs , 2012, Nature Protocols.

[21]  Hong Zhang,et al.  Crystal Structure of the Heterodimeric CLOCK:BMAL1 Transcriptional Activator Complex , 2012, Science.

[22]  Michelle L. Gumz,et al.  Advances in understanding the peripheral circadian clocks , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[23]  S. Armstrong,et al.  Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML. , 2012, Cell stem cell.

[24]  J. Takahashi,et al.  Regulation of Circadian Behavior and Metabolism by Synthetic REV-ERB Agonists , 2012, Nature.

[25]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[26]  Monika S. Kowalczyk,et al.  Intragenic enhancers act as alternative promoters. , 2012, Molecular cell.

[27]  Eduard Batlle,et al.  The circadian molecular clock creates epidermal stem cell heterogeneity , 2011, Nature.

[28]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[29]  T. Graeber,et al.  An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. , 2011, Genes & development.

[30]  Lars Bullinger,et al.  MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. , 2011, Cancer cell.

[31]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[32]  Paolo Sassone-Corsi,et al.  The histone methyltransferase MLL1 permits the oscillation of circadian gene expression , 2010, Nature Structural &Molecular Biology.

[33]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[34]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[35]  Wolfram Goessling,et al.  The Wnt/β-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML , 2010, Science.

[36]  P. Frenette,et al.  Cooperation of β2‐ and β3‐adrenergic receptors in hematopoietic progenitor cell mobilization , 2010, Annals of the New York Academy of Sciences.

[37]  Hui Zhang,et al.  MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. , 2010, Cancer cell.

[38]  M. Antoch,et al.  Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1 , 2009, Aging.

[39]  S. Armstrong,et al.  Transformation from Committed Progenitor to Leukemia Stem Cells , 2009, Annals of the New York Academy of Sciences.

[40]  D. Scadden,et al.  The leukemic stem cell niche: current concepts and therapeutic opportunities. , 2009, Blood.

[41]  Tina N. Davis,et al.  HOXA9 is required for survival in human MLL-rearranged acute leukemias. , 2009, Blood.

[42]  J. Lee,et al.  Loss of cryptochrome reduces cancer risk in p53 mutant mice , 2009, Proceedings of the National Academy of Sciences.

[43]  Howard Y. Chang,et al.  Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. , 2009, Cell stem cell.

[44]  Ulrich Mansmann,et al.  An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. , 2008, Blood.

[45]  P. Frenette,et al.  Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. , 2008, Cell stem cell.

[46]  Baolin Wu,et al.  Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. , 2008, Cancer cell.

[47]  M. Antoch,et al.  Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis , 2008, Cell cycle.

[48]  Daniel Lucas,et al.  Haematopoietic stem cell release is regulated by circadian oscillations , 2008, Nature.

[49]  Franck Delaunay,et al.  The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation* , 2008, Journal of Biological Chemistry.

[50]  A. Sehgal,et al.  The Circadian Clock Protein BMAL1 Is Necessary for Fertility and Proper Testosterone Production in Mice , 2008, Journal of biological rhythms.

[51]  M. Cleary,et al.  Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. , 2007, Genes & development.

[52]  Kai-Florian Storch,et al.  Intrinsic Circadian Clock of the Mammalian Retina: Importance for Retinal Processing of Visual Information , 2007, Cell.

[53]  Erin L. McDearmon,et al.  Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation , 2007, Proceedings of the National Academy of Sciences.

[54]  M. Cleary,et al.  Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. , 2006, Cancer cell.

[55]  T. Golub,et al.  Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9 , 2006, Nature.

[56]  M. Antoch,et al.  Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. , 2006, Genes & development.

[57]  Anne E Carpenter,et al.  A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen , 2006, Cell.

[58]  P. Hardin,et al.  PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. , 2006, Genes & development.

[59]  S. Morrison,et al.  Supplemental Experimental Procedures , 2022 .

[60]  D. Gilliland,et al.  Leukaemia stem cells and the evolution of cancer-stem-cell research , 2005, Nature Reviews Cancer.

[61]  P. Quesenberry,et al.  Circadian variations of bone marrow engraftability , 2004, Journal of cellular physiology.

[62]  R. Verhaak,et al.  Prognostically useful gene-expression profiles in acute myeloid leukemia. , 2004, The New England journal of medicine.

[63]  R. Tibshirani,et al.  Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. , 2004, The New England journal of medicine.

[64]  Ook Joon Yoo,et al.  PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S. Yamaguchi,et al.  Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo , 2003, Science.

[66]  Peng Huang,et al.  The Circadian Gene Period2 Plays an Important Role in Tumor Suppression and DNA Damage Response In Vivo , 2002, Cell.

[67]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[68]  John B. Hogenesch,et al.  Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals , 2000, Cell.

[69]  Steve A. Kay,et al.  Circadian rhythm genetics: from flies to mice to humans , 2000, Nature Genetics.

[70]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[71]  Richard A. Flavell,et al.  All's well that ends dead , 1999 .

[72]  G. Eichele,et al.  The mPer2 gene encodes a functional component of the mammalian circadian clock , 1999, Nature.

[73]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[74]  O D Laerum,et al.  DNA synthesis in human bone marrow is circadian stage dependent. , 1991, Blood.

[75]  D. Korst,et al.  Circadian Periodicity of Bone Marrow Mitotic Activity and Reticulocyte Counts in Rats and Mice , 1969, Science.

[76]  Ethan D Buhr,et al.  Molecular components of the Mammalian circadian clock. , 2013, Handbook of experimental pharmacology.

[77]  I. Weissman,et al.  Establishment of a normal hematopoietic and leukemia stem cell hierarchy. , 2008, Cold Spring Harbor symposia on quantitative biology.

[78]  H. Kantarjian,et al.  Acute myeloid leukemia , 2018, Methods in Molecular Biology.