On statistical methods in neuronal spike-train analysis

[1]  M. Degroot,et al.  Probability and Statistics , 1977 .

[2]  V. Okujava,et al.  Responses of cerebro-cortical neurons to electrical stimulation with particular reference to epileptiform discharges , 1977, Experimental Neurology.

[3]  T. Lai First Exit Times from Moving Boundaries for Sums of Independent Random Variables , 1977 .

[4]  P. Dev,et al.  Electrotonic processing of information by brain cells. , 1976, Science.

[5]  J R Clay,et al.  A stochastic analysis of the graded excitatory response of nerve membrane. , 1976, Journal of theoretical biology.

[6]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[7]  H. Tuckwell On the first-exit time problem for temporally homogeneous Markov processes , 1976, Journal of Applied Probability.

[8]  M. Thomas Some mean first-passage time approximations for the Ornstein-Uhlenbeck process , 1975, Journal of Applied Probability.

[9]  N. Singpurwalla,et al.  Methods for Statistical Analysis of Reliability and Life Data. , 1975 .

[10]  N. Goel,et al.  Stochastic models in biology , 1975 .

[11]  John A. Beekman,et al.  Asymptotic distributions for the Ornstein-Uhlenbeck process , 1975, Journal of Applied Probability.

[12]  W. Calvin Generation of spike trains in CNS neurons , 1975, Brain Research.

[13]  S E Fienberg,et al.  Stochastic models for single neuron firing trains: a survey. , 1974, Biometrics.

[14]  N. Goel,et al.  Diffusion models for firing of a neuron with varying threshold. , 1973, Journal of theoretical biology.

[15]  P. Lewis Recent results in the statistical analysis of univariate point processes , 1971 .

[16]  A. .. Lawrance Selective interaction of a poisson and renewal process: the dependency structure of the intervals between responses , 1971, Journal of Applied Probability.

[17]  G. P. Moore,et al.  Statistical signs of synaptic interaction in neurons. , 1970, Biophysical journal.

[18]  Donald H. Perkel,et al.  Solutions for a stochastic model of neuronal spike production , 1970 .

[19]  Joseph L. Gastwirth,et al.  Some models for interaction of renewal processes related to neuron firing , 1969, Journal of Applied Probability.

[20]  Grace L. Yang Contagion in Stochastic Models for Epidemics , 1968 .

[21]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[22]  P. Moran Testing for serial correlation with exponentially distributed variates. , 1967, Biometrika.

[23]  Prem S. Puri,et al.  On Optimal Asymptotic Tests of Composite Statistical Hypotheses , 1967 .

[24]  R. W. Rodieck Maintained activity of cat retinal ganglion cells. , 1967, Journal of neurophysiology.

[25]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[26]  Alexander Joseph Book reviewDischarge patterns of single fibers in the cat's auditory nerve: Nelson Yuan-Sheng Kiang, with the assistance of Takeshi Watanabe, Eleanor C. Thomas and Louise F. Clark: Research Monograph no. 35. Cambridge, Mass., The M.I.T. Press, 1965 , 1967 .

[27]  M. ten Hoopen,et al.  Interaction between Two Independent Recurrent Time Series , 1967, Inf. Control..

[28]  David R. Cox,et al.  The null distribution of the first serial correlation coefficient , 1966 .

[29]  D. Cox,et al.  The statistical analysis of series of events , 1966 .

[30]  G Horn,et al.  An analysis of spontaneous impulse activity of units in the striate cortex of unrestrained cats , 1966, The Journal of physiology.

[31]  M. Hoopen,et al.  Probabilistic firing of neurons considered as a first passage problem. , 1966, Biophysical journal.

[32]  B. Katz Nerve, Muscle and Synapse , 1966 .

[33]  R. Stein A THEORETICAL ANALYSIS OF NEURONAL VARIABILITY. , 1965, Biophysical journal.

[34]  J. Keilson A review of transient behavior in regular diffusion and birth-death processes , 1964, Journal of Applied Probability.

[35]  M. Brazier The Electrical Activity of the Nervous System , 1961, Science.

[36]  S. Hagiwara,et al.  The critical depolarization for the spike in the squid giant axon. , 1958, The Japanese journal of physiology.

[37]  S. Hagiwara,et al.  Analysis of interval fluctuation of the sensory nerve impulse. , 1954, The Japanese journal of physiology.

[38]  D. Darling,et al.  THE FIRST PASSAGE PROBLEM FOR A CONTINUOUS MARKOFF PROCESS , 1953 .

[39]  S. K. Srinivasan A stochastic model of neuronal firing , 1977 .

[40]  S. K. Srinivasan,et al.  On a stochastic model for the firing sequence of a neuron , 1976 .

[41]  Shunji Osaki,et al.  On a first-passage problem for a cumulative process with exponential decay , 1976 .

[42]  Donald L. Snyder,et al.  Random point processes , 1975 .

[43]  N. Goel,et al.  Discrete stochastic models for firing of a neuron. , 1972, Journal of theoretical biology.

[44]  P. Johannesma,et al.  Diffusion Models for the Stochastic Activity of Neurons , 1968 .

[45]  R. Stein Some models of neuronal variability. , 1967, Biophysical journal.

[46]  G. P. Moore,et al.  Statistical analysis and functional interpretation of neuronal spike data. , 1966, Annual review of physiology.