Friction Compensation in Robotics: an Overview

Friction effects are particularly critical for industrial robots, since they can induce large positioning errors, stick-slip motions, and limit cycles. This paper offers a reasoned overview of the main friction compensation techniques that have been developed in the last years, regrouping them according to the adopted kind of control strategy. Some experimental results are reported, to show how the control performances can be affected not only by the chosen method, but also by the characteristics of the available robotic architecture and of the executed task.

[1]  Giuseppe Carlo Calafiore,et al.  Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation , 2001, J. Field Robotics.

[2]  B. Bona,et al.  An experimental setup for modelling, simulation and fast prototyping of mechanical arms , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[3]  Carlos Canudas de Wit,et al.  Adaptive Friction Compensation in Robot Manipulators: Low Velocities , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[4]  Y. Orlova,et al.  Nonlinear H ∞-control of nonsmooth time-varying systems with application to friction mechanical manipulators , 2003 .

[5]  Darren M. Dawson,et al.  Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects , 1999, IEEE Trans. Control. Syst. Technol..

[6]  Evangelos Papadopoulos,et al.  Analysis and model-based control of servomechanisms with friction , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Dean Karnopp,et al.  Computer simulation of stick-slip friction in mechanical dynamic systems , 1985 .

[8]  Anders Robertsson,et al.  Friction Compensation for Passive Systems Based on the LuGre Model , 2003 .

[9]  Carlos Canudas de Wit,et al.  Adaptive friction compensation with partially known dynamic friction model , 1997 .

[10]  Basilio Bona,et al.  Nonlinear friction phenomena in direct-drive robotic arms: an experimental set-up for rapid modelling and control prototyping , 2003 .

[11]  Bruno Siciliano,et al.  Modelling and Control of Robot Manipulators , 1997, Advanced Textbooks in Control and Signal Processing.

[12]  Peter J. Gawthrop,et al.  A nonlinear disturbance observer for robotic manipulators , 2000, IEEE Trans. Ind. Electron..

[13]  Pierre Apkarian,et al.  Adaptive controls for nonlinearly parameterized uncertainties in robot manipulators , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[14]  Bernard Friedland,et al.  On adaptive friction compensation , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[15]  Rafael Kelly,et al.  On manipulator velocity control using friction compensation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[16]  Darren M. Dawson,et al.  Adaptive control techniques for friction compensation , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[17]  Brian Armstrong-Hélouvry,et al.  Control of machines with friction , 1991, The Kluwer international series in engineering and computer science.

[18]  Guangjun Liu,et al.  Decomposition-based friction compensation of mechanical systems , 2002 .

[19]  Yih-Chieh Pan,et al.  Precision-limit positioning of direct drive systems with the existence of friction , 2002 .

[20]  Maarten Steinbuch,et al.  Modeling and identification for high-performance robot control: an RRR-robotic arm case study , 2004, IEEE Transactions on Control Systems Technology.

[21]  A. G. de Jager,et al.  Grey-box modeling of friction: An experimental case-study , 1999, 1999 European Control Conference (ECC).

[22]  Brian Armstrong,et al.  New results in NPID control: tracking, integral control, friction compensation and experimental results , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  Jan Swevers,et al.  Modification of the Leuven integrated friction model structure , 2002, IEEE Trans. Autom. Control..

[24]  Prabhakar R. Pagilla,et al.  Static and dynamic friction compensation in trajectory tracking control of robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[25]  Darren M. Dawson,et al.  Adaptive control techniques forfrictioncompensation , 1999 .

[26]  Zhi-Qian Mei,et al.  The nonlinear friction compensation in the trajectory tracking of robot , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[27]  Rafael Kelly,et al.  Stable computed-torque control of robot manipulators via fuzzy self-tuning , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[28]  Rafael Kelly,et al.  Manipulator velocity field control with dynamic friction compensation , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[29]  Rajnikant V. Patel,et al.  Friction compensation in low and high-reversal-velocity manipulators , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[30]  Nariman Sepehri,et al.  Experimental comparison of some compensation techniques for the control of manipulators with stick-slip friction , 1996 .

[31]  Andrew A. Goldenberg,et al.  High-precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller , 2000, IEEE Trans. Control. Syst. Technol..

[32]  Henk Nijmeijer,et al.  Observer-based compensation of discontinuous friction , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[33]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[34]  Vincent Hayward,et al.  Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..

[35]  Se-Kyo Chung,et al.  Implementation of frictionless robot manipulator using observer-based sliding mode control , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[36]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[37]  P. Dupont,et al.  Single State Elasto-Plastic Friction Models , 2002 .

[38]  Clark J. Radcliffe,et al.  Robust nonlinear stick-slip friction compensation , 1991 .

[39]  M. Indri,et al.  Nonlinear friction estimation for digital control of direct-drive manipulators , 2003, 2003 European Control Conference (ECC).

[40]  Antonio Visioli,et al.  Hybrid force/velocity robot contour tracking: an experimental analysis of friction compensation strategies , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[41]  Yu Tang,et al.  Adaptive robust fuzzy control of nonlinear systems , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[42]  Andrew A. Goldenberg,et al.  Precise slow motion control of a direct-drive robot arm with velocity estimation and friction compensation , 2004 .

[43]  Sang-Kook Lee,et al.  Robust digital friction compensation , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[44]  Jee-Hwan Ryu,et al.  A nonlinear friction compensation method using adaptive control and its practical application to an in-parallel actuated 6-DOF manipulator , 2001 .

[45]  Georgios C. Chasparis,et al.  Analysis and Model-Based Control of Servomechanisms With Friction , 2004 .

[46]  Paolo Rocco,et al.  Single and multistate integral friction models , 2004, IEEE Transactions on Automatic Control.

[47]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[48]  Weiping Li,et al.  Adaptive manipulator control a case study , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[49]  Jan Swevers,et al.  An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..