Discrete stop-or-go games
暂无分享,去创建一个
János Flesch | Arkadi Predtetchinski | William D. Sudderth | W. Sudderth | J. Flesch | A. Predtetchinski
[1] A. Maitra,et al. Borel Stochastic Games with Lim Sup Payoff , 1993 .
[2] William D. Sudderth,et al. Persistently ϵ-Optimal Strategies , 1977, Math. Oper. Res..
[3] William D. Sudderth. Gambling Problems with a Limit Inferior Payoff , 1983, Math. Oper. Res..
[4] E. B. Dynkin,et al. Game variant of a problem on optimal stopping , 1969 .
[5] David Siegmund,et al. Great expectations: The theory of optimal stopping , 1971 .
[6] W. Sudderth,et al. Discrete Gambling and Stochastic Games , 1996 .
[7] N. Vieille,et al. Stopping games with randomized strategies , 2001 .
[8] Donald A. Martin,et al. The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.
[9] Frank Thuijsman,et al. Perfect information stochastic games and related classes , 1997, Int. J. Game Theory.
[10] Alʹbert Nikolaevich Shiri︠a︡ev. Statistical sequential analysis : optimal stopping rules , 1973 .
[11] T. Raghavan,et al. Perfect information stochastic games and related classes , 1997 .
[12] Nicolas Vieille,et al. An application of Ramsey theorem to stopping games , 2003, Games Econ. Behav..
[13] David Lindley,et al. How to Gamble if You Must. (Inequalities for Stochastic Processes) By Lester E. Dubins and Leonard J. Savage. Pp. xiv, 249. 102s. 1965. (McGraw-Hill Book Co.) , 1966, The Mathematical Gazette.
[14] Eilon Solan,et al. Equilibrium in two-player non-zero-sum Dynkin games in continuous time , 2010, 1009.5627.
[15] L. Dubins,et al. Countably additive gambling and optimal stopping , 1977 .
[16] William D. Sudderth,et al. Finitely additive and measurable stochastic games , 1993 .
[17] János Flesch,et al. Simplifying optimal strategies in limsup and liminf stochastic games , 2018, Discret. Appl. Math..
[18] William D. Sudderth,et al. An operator solution of stochastic games , 1992 .
[19] Ayala Mashiah-Yaakovi. Subgame perfect equilibria in stopping games , 2014, Int. J. Game Theory.