The counting lemma for regular k‐uniform hypergraphs
暂无分享,去创建一个
[1] Vojtěch Rödl,et al. A structural generalization of the Ramsey theorem , 1977 .
[2] Vojtech Rödl,et al. Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.
[3] János Komlós,et al. The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.
[4] H. Furstenberg,et al. A density version of the Hales-Jewett theorem , 1991 .
[5] Terence Tao. A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..
[6] Yoshiharu Kohayakawa,et al. Hereditary Properties of Triple Systems , 2003, Combinatorics, Probability and Computing.
[7] P. Seymour,et al. Excluding induced subgraphs , 2006 .
[8] Yoshiharu Kohayakawa,et al. Efficient Testing of Hypergraphs , 2002, ICALP.
[9] Vitaly Bergelson,et al. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .
[10] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[11] Vojtech Rödl,et al. Integer and fractional packings in dense 3-uniform hypergraphs , 2003, Random Struct. Algorithms.
[12] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[13] Vojtech Rödl,et al. Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.
[14] Vojtech Rödl,et al. The asymptotic number of triple systems not containing a fixed one , 2001, Discret. Math..
[15] K. F. Roth. On Certain Sets of Integers , 1953 .
[16] H. Furstenberg,et al. An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .
[17] Vojtech Rödl,et al. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..
[18] Imre Z. Ruzsa,et al. Generalized arithmetical progressions and sumsets , 1994 .
[19] Endre Szemerédi,et al. A statistical theorem of set addition , 1994, Comb..
[20] Vojtech Rödl,et al. Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005, Random Struct. Algorithms.
[21] RodlVojtech,et al. Regular Partitions of Hypergraphs , 2007 .
[22] Mathias Schacht,et al. Density theorems and extremal hypergraph problems , 2006 .
[23] W. T. Gowers,et al. Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.
[24] Vojtech Rödl,et al. Regularity properties for triple systems , 2003, Random Struct. Algorithms.
[25] V. Rödl,et al. Extremal Hypergraph Problems and the Regularity Method , 2006 .
[26] G. Freiman. Foundations of a Structural Theory of Set Addition , 2007 .
[27] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[28] Fan Chung Graham,et al. Quasi-Random Hypergraphs , 1990, Random Struct. Algorithms.
[29] H. Prömel,et al. Excluding Induced Subgraphs III: A General Asymptotic , 1992 .
[30] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[31] R. Graham,et al. Quasi-random set systems , 1991 .
[32] József Solymosi,et al. Arithmetic Progressions in Sets with Small Sumsets , 2005, Combinatorics, Probability and Computing.
[33] Vojtech Rödl,et al. An algorithmic version of the hypergraph regularity method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[34] J. Solymosi. Note on a Generalization of Roth’s Theorem , 2003 .
[35] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[36] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[37] Vitaly Bergelson,et al. An Ergodic IP Polynomial Szemerédi Theorem , 2000 .
[38] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[39] Vojtech Rödl,et al. Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.
[40] Fan Chung Graham,et al. Regularity Lemmas for Hypergraphs and Quasi-randomness , 1991, Random Struct. Algorithms.
[41] Peter J. Cameron,et al. Some sequences of integers , 1989, Discret. Math..
[42] Mathias Schacht,et al. On the Regularity Method for Hypergraphs , 2004 .
[43] Vojtech Rödl,et al. Integer and fractional packings of hypergraphs , 2007, J. Comb. Theory, Ser. B.
[44] alcun K. grafo. ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .
[45] Vojtech Rödl,et al. Counting Small Cliques in 3-uniform Hypergraphs , 2005, Comb. Probab. Comput..
[46] Vojtech Rödl,et al. On characterizing hypergraph regularity , 2002, Random Struct. Algorithms.
[47] Alan M. Frieze,et al. Quick Approximation to Matrices and Applications , 1999, Comb..
[48] Yoshiharu Kohayakawa,et al. Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.
[49] Vojtech Rödl,et al. The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..
[50] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[51] Vojtech Rödl,et al. An Algorithmic Regularity Lemma for Hypergraphs , 2000, SIAM J. Comput..
[52] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[53] V. RÖDL,et al. THE RAMSEY NUMBER FOR HYPERGRAPH CYCLES II , 2007 .