The counting lemma for regular k‐uniform hypergraphs

Szemerédi’s Regularity Lemma proved to be a powerful tool in the area of extremal graph theory. Many of its applications are based on its accompanying Counting Lemma: If G is an `-partite graph with V (G) = V1 ∪ · · · ∪ V` and |Vi| = n for all i ∈ [`], and all pairs (Vi, Vj) are ε-regular of density d for 1 ≤ i < j ≤ ` and ε d, then G contains (1± f`(ε))d “ ` 2 ” × n` cliques K`, where f`(ε) → 0 as ε → 0. Recently, V. Rödl and J. Skokan generalized Szemerédi’s Regularity Lemma from graphs to k-uniform hypergraphs for arbitrary k ≥ 2. In this paper we prove a Counting Lemma accompanying the Rödl–Skokan hypergraph Regularity Lemma. Similar results were independently obtained by W. T. Gowers. It is known that such results give combinatorial proofs to the density result of E. Szemerédi and some of the density theorems of H. Furstenberg and Y. Katznelson.

[1]  Vojtěch Rödl,et al.  A structural generalization of the Ramsey theorem , 1977 .

[2]  Vojtech Rödl,et al.  Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.

[3]  János Komlós,et al.  The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.

[4]  H. Furstenberg,et al.  A density version of the Hales-Jewett theorem , 1991 .

[5]  Terence Tao A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..

[6]  Yoshiharu Kohayakawa,et al.  Hereditary Properties of Triple Systems , 2003, Combinatorics, Probability and Computing.

[7]  P. Seymour,et al.  Excluding induced subgraphs , 2006 .

[8]  Yoshiharu Kohayakawa,et al.  Efficient Testing of Hypergraphs , 2002, ICALP.

[9]  Vitaly Bergelson,et al.  Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .

[10]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[11]  Vojtech Rödl,et al.  Integer and fractional packings in dense 3-uniform hypergraphs , 2003, Random Struct. Algorithms.

[12]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[13]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.

[14]  Vojtech Rödl,et al.  The asymptotic number of triple systems not containing a fixed one , 2001, Discret. Math..

[15]  K. F. Roth On Certain Sets of Integers , 1953 .

[16]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .

[17]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[18]  Imre Z. Ruzsa,et al.  Generalized arithmetical progressions and sumsets , 1994 .

[19]  Endre Szemerédi,et al.  A statistical theorem of set addition , 1994, Comb..

[20]  Vojtech Rödl,et al.  Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005, Random Struct. Algorithms.

[21]  RodlVojtech,et al.  Regular Partitions of Hypergraphs , 2007 .

[22]  Mathias Schacht,et al.  Density theorems and extremal hypergraph problems , 2006 .

[23]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[24]  Vojtech Rödl,et al.  Regularity properties for triple systems , 2003, Random Struct. Algorithms.

[25]  V. Rödl,et al.  Extremal Hypergraph Problems and the Regularity Method , 2006 .

[26]  G. Freiman Foundations of a Structural Theory of Set Addition , 2007 .

[27]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[28]  Fan Chung Graham,et al.  Quasi-Random Hypergraphs , 1990, Random Struct. Algorithms.

[29]  H. Prömel,et al.  Excluding Induced Subgraphs III: A General Asymptotic , 1992 .

[30]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[31]  R. Graham,et al.  Quasi-random set systems , 1991 .

[32]  József Solymosi,et al.  Arithmetic Progressions in Sets with Small Sumsets , 2005, Combinatorics, Probability and Computing.

[33]  Vojtech Rödl,et al.  An algorithmic version of the hypergraph regularity method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[34]  J. Solymosi Note on a Generalization of Roth’s Theorem , 2003 .

[35]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[36]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[37]  Vitaly Bergelson,et al.  An Ergodic IP Polynomial Szemerédi Theorem , 2000 .

[38]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[39]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[40]  Fan Chung Graham,et al.  Regularity Lemmas for Hypergraphs and Quasi-randomness , 1991, Random Struct. Algorithms.

[41]  Peter J. Cameron,et al.  Some sequences of integers , 1989, Discret. Math..

[42]  Mathias Schacht,et al.  On the Regularity Method for Hypergraphs , 2004 .

[43]  Vojtech Rödl,et al.  Integer and fractional packings of hypergraphs , 2007, J. Comb. Theory, Ser. B.

[44]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[45]  Vojtech Rödl,et al.  Counting Small Cliques in 3-uniform Hypergraphs , 2005, Comb. Probab. Comput..

[46]  Vojtech Rödl,et al.  On characterizing hypergraph regularity , 2002, Random Struct. Algorithms.

[47]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[48]  Yoshiharu Kohayakawa,et al.  Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.

[49]  Vojtech Rödl,et al.  The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..

[50]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[51]  Vojtech Rödl,et al.  An Algorithmic Regularity Lemma for Hypergraphs , 2000, SIAM J. Comput..

[52]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[53]  V. RÖDL,et al.  THE RAMSEY NUMBER FOR HYPERGRAPH CYCLES II , 2007 .