Safe Control of Hopping in Uneven Terrain

Using a classic problem from robotics of a vertical hopping machine, we demonstrate an approach for investigating the safety of a hybrid discrete/continuous dynamic system operating in an uncertain environment. The challenges imposed by the environment are expressed in terms of constraints imposed in the phase space of the system as it undergoes periodic motion. The approach is demonstrated first with a hopper that has state feedback to govern the timing of thrust and subsequently for a timer-based hopper. The latter case increases the dimensionality of the problem and must be treated numerically. However, the use of a multiresolution surface representation of the feasible regions in state space reduces the computational burden of the approach.

[1]  P. Mosterman,et al.  A theory of discontinuities in physical system models , 1998 .

[2]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[3]  Mark R. Cutkosky,et al.  Stride Period Adaptation of a Biomimetic Running Hexapod , 2004, Int. J. Robotics Res..

[4]  Jonathan E. Clark,et al.  Biomimetic design and fabrication of a hexapedal running robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[5]  Roger W. Brockett,et al.  On the computer control of movement , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[6]  Yasuhiro Fukuoka,et al.  Adaptive Running of a Quadruped Robot Using Delayed Feedback Control , 2005, ICRA.

[7]  Martin Buehler,et al.  Reliable stair climbing in the simple hexapod 'RHex' , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[8]  Roger W. Brockett,et al.  Hybrid Models for Motion Control Systems , 1993 .

[9]  Shigeo Hirose,et al.  A Study of Design and Control of a Quadruped Walking Vehicle , 1984 .

[10]  Matthew D. Berkemeier,et al.  Control of hopping height in legged robots using a neural-mechanical approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[11]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[12]  J. Lygeros,et al.  A game theoretic approach to controller design for hybrid systems , 2000, Proceedings of the IEEE.

[13]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[14]  V. Borkar,et al.  A unified framework for hybrid control : b background, model, and theory , 1994 .

[15]  B. Seth,et al.  Search for Initial Conditions for Sustained Hopping of Passive Springy-Leg Offset-Mass Hopping Robot , 2007 .

[16]  Jonathan E. Clark,et al.  Stride Period Adaptation for a Biomimetic Running Hexapod , 2001, ISRR.

[17]  Garth Zeglin,et al.  The bow leg hopping robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[18]  Daniel E. Koditschek,et al.  Preliminary Analysis of a Biologically Inspired 1-DOF "Clock" Stabilized Hopper , 2001 .

[19]  Daniel E. Koditschek,et al.  Design, modeling and preliminary control of a compliant hexapod robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[20]  Ian E. Brown,et al.  A Reductionist Approach to Creating and Using Neuromusculoskeletal Models , 2000 .

[21]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[22]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[23]  J. G. Cham,et al.  Robust Dynamic Locomotion Through Feedforward-Preflex Interaction , 2000, Dynamic Systems and Control: Volume 2.

[24]  Feng Lin,et al.  Control Synthesis for a Class of Hybrid Systems Subject to Configuration-Based Safety Constraints , 1997, HART.

[25]  Robert Ringrose,et al.  Self-stabilizing running , 1997, Proceedings of International Conference on Robotics and Automation.

[26]  Jessica K. Hodgins,et al.  Adjusting step length for rough terrain locomotion , 1991, IEEE Trans. Robotics Autom..

[27]  Viktor Vladimirovich Nemytskii Qualitative theory of differential equations , 1960 .

[28]  Pieter J. Mosterman,et al.  A hybrid modeling and verification paradigm for embedded control systems , 1998 .

[29]  Jonathan E. Clark,et al.  iSprawl: Autonomy, and the Effects of Power Transmission , 2005 .

[30]  Alexander F. Vakakis,et al.  An "Interesting" Strange Attractor in the Dynamics of a Hopping Robot , 1991, Int. J. Robotics Res..

[31]  Daniel E. Koditschek,et al.  Analysis of a Simplified Hopping Robot , 1991, Int. J. Robotics Res..

[32]  Rufus Isaacs,et al.  Differential Games , 1965 .

[33]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts , 2003, Int. J. Robotics Res..

[34]  Robert B. McGhee,et al.  Adaptive Locomotion of a Multilegged Robot over Rough Terrain , 1979, IEEE Transactions on Systems, Man, and Cybernetics.