Impact of tree species on soil solutions in acidic conditions

Capillary solutions of two acidic forest topsoils were sampled for one year. On each of the two soils, there were three stands (Norway spruce, Douglas fir, Hardwood). Capillary solutions were extracted using the centrifugation method. Soil moistur e under Hardwood stands was higher than under coniferous stands. Soil solutions under the coniferous tree species were more acidi c and more concentrated in SO4 -2 -S and Na + than under Hardwoods, showing that coniferous tree species intercept atmospheric deposi- tions more efficiently than hardwood tree species do. Soil solutions under hardwood stands were more concentrated in K + , Alt, Si and Fe 3+ than those under coniferous stands. On the least desaturated site, soil solutions under the hardwood stand were less concentrat ed in NO3 - -N and C than under the coniferous stands. The amount of rainfall significantly influenced results by diluting soil solutions. When the amount of rainfall was high, there were little difference between tree species.

[1]  G. Neumann,et al.  Root-induced changes in the availability of nutrients in the rhizosphere. , 2002 .

[2]  J. Ranger,et al.  Production and root uptake of mineral nitrogen in a chronosequence of Douglas-fir (Pseudotsuga menziesii) in the Beaujolais Mounts , 2000 .

[3]  O. Borggaard,et al.  Effect of natural organic soil solutes on weathering rates of soil minerals , 1998 .

[4]  D. Markewitz,et al.  The Bio in Aluminum and Silicon Geochemistry , 1998 .

[5]  M. Fernández‐Sanjurjo,et al.  Speciation and Solubility Control of Aluminium in Soils Developed from Slates of the River Sor Watershed (Galicia, NW Spain) , 1998 .

[6]  D. Parkinson,et al.  Distribution of earthworms along a sharp acidification gradient , 1998, Pedobiologia.

[7]  R. Danielsson,et al.  Forest soil acidification: Monitoring on the regional scale, Varmland, Sweden , 1998 .

[8]  M. Fernández‐Sanjurjo,et al.  Chemistry of soil solutions under different kinds of vegetation in the vicinity of a thermal power station. , 1998, Environmental pollution.

[9]  R. Graham,et al.  Transformations of 2:1 phyllosilicates in 41-year-old soils under oak and pine , 1996 .

[10]  R. Giesler Chemistry of soil solution extracted by centrifugation - methodology and field applications , 1996 .

[11]  L. Folkeson,et al.  The influence of tree species on acid deposition, proton budgets and element fluxes in south Swedish forest ecosystems , 1995 .

[12]  E. Dambrine,et al.  Potential Role of Aluminium Toxicity in Nutrient Deficiencies as Related to Forest Decline: An Assessment of Soil Solution Data from the Vosges Mountains , 1995 .

[13]  D. Binkley The influence of tree species on forest soils: processes and patterns , 1995 .

[14]  B. Reynolds,et al.  Effects of forest age on surface drainage water and soil solution aluminium chemistry in stagnopodzols in Wales , 1994, Water, Air, and Soil Pollution.

[15]  C. Nys,et al.  The effect of spruce (Picea abies Karst.) on soil development: an analytical and experimental approach , 1994 .

[16]  J. Boudot,et al.  Aluminium toxicity in declining forests: a general overview with a seasonal assessment in a silver fir forest in the Vosges mountains (France) , 1994 .

[17]  M. Hornung,et al.  Soil Solution Chemistry and Throughfall Under Adjacent Stands of Japanese Larch and Sitka Spruce at Three Contrasting Locations in Britain , 1993 .

[18]  J. Ranger,et al.  Comparaison des eaux liées et des eaux libres des sols de 3 peuplements d'épicéa (Picea abies Karst) des Vosges. Application à l'étude du fonctionnement actuel des sols et conséquences pour l'état sanitaire des peuplements , 1993 .

[19]  A. Brown,et al.  Water Chemistry Profiles under Four Tree Species at Gisburn, NW England , 1991 .

[20]  T. Kavanagh,et al.  Influence of stand age and spatial location on throughfall chemistry beneath black spruce , 1990 .

[21]  P. Kalisz,et al.  Single-Tree Influence on Soil Properties in the Mountains of Eastern Kentucky , 1990 .

[22]  D. Zabowski,et al.  Lysimeter and Centrifuge Soil Solutions: Seasonal Differences between Methods , 1990 .

[23]  M. Hornung,et al.  Water quality changes from input to stream. , 1990 .

[24]  G. Scholz Ernährungsstörungen bei Kulturpflanzen., Aufl. 762, W. Bergmann (Ed.), in: Entstehung, visuelle and analytische Diagnose. Unter Mitwirkung zahlr. Bildautoren. 2., erweiterte and neugestaltete. VEB Gustav Fischer Verlag, Jena (1988), S., 945 Farbbilder auf 226 Tafeln, 17 Textabb., 12 Übersichten and , 1989 .

[25]  U. Falkengren-Grerup Effect of stemflow on beech forest soils and vegetation in southern Sweden , 1989 .

[26]  E. Bringmark Spatial variation in soil pH of beech forests in relation to buffering properties and soil depths , 1989 .

[27]  M. Bonneau LE DIAGNOSTIC FOLIAIRE , 1988 .

[28]  S. Riha,et al.  Effects of forest vegetation on spatial variability of surface mineral soil pH, soluble aluminum and carbon , 1986 .

[29]  R. Skeffington Soil Properties under Three Species of Tree in Southern England in Relation to Acid Deposition in Throughfall , 1983 .

[30]  Françoise Forgeard,et al.  Interception des précipitations et apport au sol d'éléments minéraux par les eaux de pluie et les pluviolessivats dans une hêtraie atlantique et dans quelques peuplements résineux en Bretagne , 1980 .

[31]  W. H. Smith Character and Significance of Forest Tree Root Exudates , 1976 .

[32]  R. Mayer,et al.  Aspects of soil water behavior as related to Beech and Spruce stands. Some results of the water balance investigations. , 1971 .

[33]  N. Nykvist Leaching and decomposition of water-soluble organic substancesfrom different types of leaf and needle litter , 1963 .

[34]  J. M. Bremner Determination of nitrogen in soil by the Kjeldahl method , 1960, The Journal of Agricultural Science.

[35]  Olof Tamm Om bestämning av de oorganiska komponenterna i markens gelkomplex , 1922 .