Open-loop asymptotically efficient model reduction with the Steiglitz-McBride method
暂无分享,去创建一个
Håkan Hjalmarsson | Miguel Galrinho | Niklas Everitt | H. Hjalmarsson | Niklas Everitt | Miguel Galrinho
[1] T. Söderström,et al. Optimal instrumental variable estimation and approximate implementations , 1983 .
[2] J. Durbin. EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .
[3] David Q. Mayne,et al. Linear identification of ARMA processes , 1982, Autom..
[4] Håkan Hjalmarsson,et al. On estimating initial conditions in unstructured models , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).
[5] Peter C. Young,et al. Statistical Emulation of Large Linear Dynamic Models , 2011, Technometrics.
[6] E. Hannan,et al. Recursive estimation of mixed autoregressive-moving average order , 1982 .
[7] Petre Stoica,et al. MIMO system identification: state-space and subspace approximations versus transfer function and instrumental variables , 2000, IEEE Trans. Signal Process..
[8] A. Evans,et al. Optimal least squares time-domain synthesis of recursive digital filters , 1973 .
[9] P. Young,et al. Refined instrumental variable methods of recursive time-series analysis Part I. Single input, single output systems , 1979 .
[10] Petre Stoica,et al. An indirect prediction error method for system identification , 1991, Autom..
[11] L. Mcbride,et al. A technique for the identification of linear systems , 1965 .
[12] P. Young,et al. Simplicity out of complexity in environmental modelling: Occam's razor revisited. , 1996 .
[13] James H. McClellan,et al. Exact equivalence of the Steiglitz-McBride iteration and IQML , 1991, IEEE Trans. Signal Process..
[14] P. Young,et al. Refined instrumental variable methods of recursive time-series analysis Part II. Multivariable systems , 1979 .
[15] T. Söderström,et al. The Steiglitz-McBride identification algorithm revisited--Convergence analysis and accuracy aspects , 1981 .
[16] D. A. Pierce. Least squares estimation in dynamic-disturbance time series models , 1972 .
[17] Yves Rolain,et al. User friendly Box-Jenkins identification using nonparametric noise models , 2011, IEEE Conference on Decision and Control and European Control Conference.
[18] E. J. Hannan,et al. Multivariate linear time series models , 1984, Advances in Applied Probability.
[19] Frederick Adams Woods,et al. THE NON-INHERITANCE OF SEX IN MAN , 1906 .
[20] Peter C. Young,et al. The refined instrumental variable method , 2008 .
[21] P. Young,et al. Refined instrumental variable methods of recursive time-series analysis Part III. Extensions , 1980 .
[22] Håkan Hjalmarsson,et al. A weighted least-squares method for parameter estimation in structured models , 2014, 53rd IEEE Conference on Decision and Control.
[23] B. Wahlberg. Model reductions of high-order estimated models : the asymptotic ML approach , 1989 .
[24] Yucai Zhu,et al. Multivariable System Identification For Process Control , 2001 .
[25] L. Ljung,et al. Asymptotic properties of the least-squares method for estimating transfer functions and disturbance spectra , 1992, Advances in Applied Probability.
[26] E. J. Hannan,et al. Linear estimation of ARMA processes , 1983, Autom..
[27] Lennart Ljung,et al. Closed-loop identification revisited , 1999, Autom..
[28] Håkan Hjalmarsson,et al. The Box-Jenkins Steiglitz-McBride algorithm , 2016, Autom..
[29] Arnab K. Shaw. Optimal identification of discrete-time systems from impulse response data , 1994, IEEE Trans. Signal Process..
[30] Peter C. Young,et al. Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model , 2015, Autom..