The biomechanics of sensory organs

Synopsis Studies of mechanosensory systems have largely focused on the filter characteristics of their neural components in relation to their ultimate function. Less attention has focused on the role of the physical structure of the sensory organ which also acts as a mechanical filter of the sensory input. This biomechanical filtering is readily apparent in the case of several mechanosensory systems that transduce information about the deformations of the sensory organs in response to external forces. Because these deformations critically depend on the geometry and material properties of the mechanosensory organs, it is necessary to conduct focused studies on the biomechanical characteristics of these organs when studying the encoding properties of the mechanosensory system. Modern experimental tools such as Laser Doppler Vibrometry and computational tools such as Computational Fluid Dynamics and Finite Element Analysis provide the means for determining the sensory pre-filtering properties of small-scale mechanosensory structures. In all the cases covered in this review, the physical properties of the sensory organs play a central role in determining the signals received by the nervous system.

[1]  Theodor Sexl,et al.  Über den von E. G. Richardson entdeckten „Annulareffekt“ , 1930 .

[2]  J. Pringle,et al.  Proprioception In Insects , 1938 .

[3]  J. Pringle Proprioception In Insects: II. The Action Of The Campaniform Sensilla On The Legs , 1938 .

[4]  J. Pringle The gyroscopic mechanism of the halteres of Diptera , 1948, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[5]  T. Weis-Fogh,et al.  An Aerodynamic Sense Organ Stimulating and Regulating Flight in Locusts , 1949, Nature.

[6]  W. V. Bergeijk,et al.  Lateral Line Organ of Fish: A Possible Key to the Hair Cell Problem , 1962 .

[7]  Gerard G. Harris,et al.  Evidence that the Lateral‐Line Organ Responds to Near‐Field Displacements of Sound Sources in Water , 1962 .

[8]  S. Dijkgraaf THE FUNCTIONING and SIGNIFICANCE OF THE LATERAL‐LINE ORGANS , 1963, Biological reviews of the Cambridge Philosophical Society.

[9]  U. Thurm Mechanoreceptors in the Cuticle of the Honey Bee: Fine Structure and Stimulus Mechanism , 1964, Science.

[10]  K. M. Chapman,et al.  CAMPANIFORM SENSILLA ON THE TACTILE SPINES OF THE LEGS OF THE COCKROACH. , 1965, The Journal of experimental biology.

[11]  P. Görner A proposed transducing mechanism for a multiply-innervated mechanoreceptor (Trichobothrium) in spiders. , 1965, Cold Spring Harbor symposia on quantitative biology.

[12]  A. Flock,et al.  Transducing mechanisms in the lateral line canal organ receptors. , 1965, Cold Spring Harbor symposia on quantitative biology.

[13]  J Palka,et al.  The cerci and abdominal giant fibres of the house cricket, Acheta domesticus. I. Anatomy and physiology of normal adults , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  J. Palka,et al.  The cerci and abdominal giant fibres of the house cricket, Acheta domesticus. II. Regeneration and effects of chronic deprivation , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  Douglas D. Weber,et al.  Morphology and function of the lateral line of juvenile steelhead trout in relation to gas‐bubble disease* , 1976 .

[16]  A. Hudspeth,et al.  Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Gray,et al.  The rigidity of fish and patterns of lateral line stimulation , 1982, Nature.

[18]  E. Denton,et al.  Mechanical factors in the excitation of clupeid lateral lines , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  Sietse M. van Netten,et al.  Laser interferometric measurements on the dynamic behaviour of the cupula in the fish lateral line , 1987, Hearing Research.

[20]  S. V. van Netten,et al.  The application of incident light polarization microscopy for the visualization of vertebrate sensory hair cells in vivo. , 1987, Journal of microscopy.

[21]  A. Y. Cheer,et al.  Paddles and rakes: Fluid flow through bristled appendages of small organisms* , 1987 .

[22]  Jelle Atema,et al.  Sensory Biology of Aquatic Animals , 1988, Springer New York.

[23]  Ad. J. Kalmijn,et al.  Hydrodynamic and Acoustic Field Detection , 1988 .

[24]  Sietse M. van Netten Laser interferometer microscope for the measurement of nanometer vibrational displacements of a light‐scattering microscopic object , 1988 .

[25]  S. V. Netten,et al.  Dynamic Behavior and Micromechanical Properties of the Cupula , 1989 .

[26]  H. Münz,et al.  Functional Organization of the Lateral Line Periphery , 1989 .

[27]  Alfon B. A. Kroese,et al.  Sensory Transduction in Lateral Line Hair cells , 1989 .

[28]  Sheryl Coombs,et al.  The Mechanosensory Lateral Line , 1989 .

[29]  J. Gray,et al.  Some Observations on the Forces Acting on Neuromasts in Fish Lateral Line Canals , 1989 .

[30]  Michael H. Dickinson,et al.  Comparison of Encoding Properties of Campaniform Sensilla on the Fly Wing , 1990 .

[31]  S. M. van Netten Hydrodynamics of the excitation of the cupula in the fish canal , 1991 .

[32]  J P Miller,et al.  Representation of sensory information in the cricket cercal sensory system. II. Information theoretic calculation of system accuracy and optimal tuning-curve widths of four primary interneurons. , 1991, Journal of neurophysiology.

[33]  J. Miller,et al.  Representation of sensory information in the cricket cercal sensory system. I. Response properties of the primary interneurons. , 1991, Journal of neurophysiology.

[34]  N A Schellart,et al.  Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. , 1992, Journal of neurophysiology.

[35]  R R Hoy,et al.  The evolutionary convergence of hearing in a parasitoid fly and its cricket host. , 1992, Science.

[36]  M. Dickinson Directional Sensitivity and Mechanical Coupling Dynamics of Campaniform Sensilla During Chordwise Deformations of the Fly Wing , 1992 .

[37]  Friedrich G. Barth,et al.  Dynamics of Arthropod Filiform Hairs. I. Mathematical Modelling of the Hair and Air Motions , 1993 .

[38]  Friedrich G. Barth,et al.  Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria ( Cupiennius salei Keys.) , 1993 .

[39]  H. Bleckmann Reception of hydrodynamic stimuli in aquatic and semiaquatic animals , 1994 .

[40]  S M Khanna,et al.  Stiffness changes of the cupula associated with the mechanics of hair cells in the fish lateral line. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Miles,et al.  Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea. , 1995, The Journal of the Acoustical Society of America.

[42]  Ronald R. Hoy,et al.  Effects of a tachinid parasitoid, Ormia ochracea, on the behaviour and reproduction of its male and female field cricket hosts (Gryllus spp) , 1995 .

[43]  Friedrich G. Barth,et al.  Dynamics of Arthropod Filiform Hairs. III. Flow Patterns Related to Air Movement Detection in a Spider (Cupiennius salei KEYS.) , 1995 .

[44]  J. Miller,et al.  Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. , 1996, Journal of neurophysiology.

[45]  D. Robert,et al.  Tympanal hearing in tachinid flies (Diptera, Tachinidae, Ormiini): the comparative morphology of an innovation , 1996, Cell and Tissue Research.

[46]  Friedrich G. Barth,et al.  Dynamics of Arthropod Filiform Hairs. IV. Hair Motion in Air and Water , 1996 .

[47]  H. Bleckmann,et al.  Seal whiskers detect water movements , 1998, Nature.

[48]  T. Matheson,et al.  Chordotonal Organs of Insects , 1998 .

[49]  R N Miles,et al.  Tympanal hearing in the sarcophagid parasitoid fly Emblemasoma sp.: the biomechanics of directional hearing. , 1999, The Journal of experimental biology.

[50]  Richard R. Fay,et al.  Comparative Hearing: Fish and Amphibians , 1999, Springer Handbook of Auditory Research.

[51]  Jan H. Cocatre-Zilgien,et al.  Modeling stress and strain in an insect leg for simulation of campaniform sensilla responses to external forces , 1999, Biological Cybernetics.

[52]  M. Göpfert,et al.  Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. , 1999, The Journal of experimental biology.

[53]  John C. Montgomery,et al.  The Enigmatic Lateral Line System , 1999 .

[54]  Friedrich G. Barth,et al.  Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli , 1999 .

[55]  A. Purgue,et al.  Mechanics of the inner ear of the bullfrog (Rana catesbeiana): the contact membranes and the periotic canal , 2000, Journal of Comparative Physiology A.

[56]  M. Koehl,et al.  Sniffing by a silkworm moth: wing fanning enhances air penetration through and pheromone interception by antennae. , 2000, The Journal of experimental biology.

[57]  M. Göpfert,et al.  Nanometre–range acoustic sensitivity in male and female mosquitoes , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[58]  A. Purgue,et al.  A model for energy flow in the inner ear of the bullfrog (Rana catesbeiana) , 2000, Journal of Comparative Physiology A.

[59]  P Müller,et al.  A shot in the dark: the silent quest of a free-flying phonotactic fly. , 2001, The Journal of experimental biology.

[60]  D Robert Innovative Biomechanics for Directional Hearing in Small Flies , 2001, The Biological Bulletin.

[61]  Daniel Robert,et al.  Active auditory mechanics in mosquitoes , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  G. Jeronimidis,et al.  A novel strain sensor based on the campaniform sensillum of insects , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[63]  A. S. French,et al.  From stress and strain to spikes: mechanotransduction in spider slit sensilla , 2002, Journal of Comparative Physiology A.

[64]  M. Göpfert,et al.  The mechanical basis of Drosophila audition. , 2002, The Journal of experimental biology.

[65]  M. Göpfert,et al.  Acoustic sensitivity of fly antennae. , 2002, Journal of insect physiology.

[66]  J. Mogdans,et al.  Neurobiology of the Fish Lateral Line: Adaptations for the Detection of Hydrodynamic Stimuli in Running Water , 2004 .

[67]  Die Bienenantenne als Meßorgan der Flugeigengeschwindigkeit , 2004, Naturwissenschaften.

[68]  U. Grünert,et al.  Campaniform sensilla of Calliphora vicina (Insecta, Diptera) , 1987, Zoomorphology.

[69]  R. Blickhan,et al.  Strains in the exoskeleton of spiders , 2004, Journal of Comparative Physiology A.

[70]  R. Miles,et al.  Directional hearing by mechanical coupling in the parasitoid fly Ormia ochracea , 2004, Journal of Comparative Physiology A.

[71]  H. Heinzel,et al.  Aerodynamic and mechanical properties of the antennae as air-current sense organs inLocusta migratoria , 1980, Journal of Comparative Physiology A.

[72]  Tateo Shimozawa,et al.  A threshold analysis of cricket cercal interneurons by an alternating air-current stimulus , 1984, Journal of Comparative Physiology A.

[73]  K. Dumpert,et al.  Cricket combined mechanoreceptors and kicking response , 2004, Journal of comparative physiology.

[74]  J. P. Miller,et al.  Stimulus-response properties of cricket cereal filiform receptors , 1995, Journal of Comparative Physiology A.

[75]  F. Barth,et al.  Model studies on the mechanical significance of grouping in compound spider slit sensilla (Chelicerata, Araneida) , 1984, Zoomorphology.

[76]  Tateo Shimozawa,et al.  The aerodynamics and sensory physiology of range fractionation in the cereal filiform sensilla of the cricketGryllus bimaculatus , 1984, Journal of Comparative Physiology A.

[77]  Gerhard von der Emde,et al.  The senses of fish : adaptations for the reception of natural stimuli , 2004 .

[78]  G. Wendler,et al.  The phasic influence of self-generated air current modulations on the locust flight motor , 1983, Journal of comparative physiology.

[79]  Aerodynamic and mechanical properties of the antennae as air-current sense organs inLocusta migratoria , 2004, Journal of comparative physiology.

[80]  Friedrich G Barth,et al.  Spider mechanoreceptors , 2004, Current Opinion in Neurobiology.

[81]  Tateo Shimozawa,et al.  Varieties of filiform hairs: range fractionation by sensory afferents and cereal interneurons of a cricket , 1984, Journal of Comparative Physiology A.

[82]  D. Robert,et al.  The tympanal hearing organ of the parasitoid fly Ormia ochracea (Diptera, Tachinidae, Ormiini) , 2004, Cell and Tissue Research.

[83]  J. W. S. PRINGLE PR0PRI0CEPTI0N IN INSECTS I. A NEW TYPE OF MECHANICAL RECEPTOR FROM THE PALPS OF THE COCKROACH , 2005 .

[84]  Sheryl Coombs,et al.  Biology of the mechanosensory lateral line in fishes , 1995, Reviews in Fish Biology and Fisheries.

[85]  F. Barth,et al.  Finite element modeling of arachnid slit sensilla—I. The mechanical significance of different slit arrays , 2007, Journal of Comparative Physiology A.

[86]  Sietse M van Netten,et al.  Source location encoding in the fish lateral line canal , 2006, Journal of Experimental Biology.

[87]  Jacob Engelmann,et al.  Neural responses of goldfish lateral line afferents to vortex motions , 2006, Journal of Experimental Biology.

[88]  F. Barth,et al.  Studying the deformation of arachnid slit sensilla by a fracture mechanical approach. , 2006, Journal of biomechanics.

[89]  Sheryl Coombs,et al.  The Hydrodynamics and Structural Mechanics of the Lateral Line System , 2006 .

[90]  Daniel Robert,et al.  Nonlinear auditory mechanism enhances female sounds for male mosquitoes , 2006, Proceedings of the National Academy of Sciences.

[91]  Sanjay P Sane,et al.  Induced airflow in flying insects I. A theoretical model of the induced flow , 2006, Journal of Experimental Biology.

[92]  Nathaniel P. Jacobson,et al.  Induced airflow in flying insects II. Measurement of induced flow , 2006, Journal of Experimental Biology.

[93]  S. V. van Netten Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. , 2006, Biological cybernetics.

[94]  Graham K. Taylor,et al.  Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth , 2006 .

[95]  F. Barth,et al.  Finite element modeling of arachnid slit sensilla—I. The mechanical significance of different slit arrays , 2007, Journal of Comparative Physiology A.

[96]  S. Sane,et al.  Antennal Mechanosensors Mediate Flight Control in Moths , 2007, Science.

[97]  M. Grosenbaugh,et al.  The hydrodynamic footprint of a benthic, sedentary fish in unidirectional flow. , 2007, The Journal of the Acoustical Society of America.

[98]  Matthew J. McHenry,et al.  The flexural stiffness of superficial neuromasts in the zebrafish (Danio rerio) lateral line , 2007, Journal of Experimental Biology.

[99]  H. Bleckmann,et al.  Peripheral and central processing of lateral line information , 2008, Journal of Comparative Physiology A.

[100]  Carlo Menon,et al.  Biomimetics of campaniform sensilla: Measuring strain from the deformation of holes , 2007 .

[101]  Charlotte Barbier,et al.  Drag force acting on a neuromast in the fish lateral line trunk canal. I. Numerical modelling of external–internal flow coupling , 2009, Journal of The Royal Society Interface.

[102]  Matthew J. McHenry,et al.  The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio) , 2008, Journal of Experimental Biology.

[103]  Christoph Brücker,et al.  Measuring Flow Velocity and Flow Direction by Spatial and Temporal Analysis of Flow Fluctuations , 2008, The Journal of Neuroscience.

[104]  M. McHenry,et al.  Mechanical filtering by the boundary layer and fluid–structure interaction in the superficial neuromast of the fish lateral line system , 2008, Journal of Comparative Physiology A.

[105]  T. Effertz,et al.  Using Drosophila for studying fundamental processes in hearing. , 2009, Integrative and comparative biology.

[106]  G. G. Stokes On the Effect of the Internal Friction of Fluids on the Motion of Pendulums , 2009 .

[107]  Hidehiko K. Inagaki,et al.  The neural basis of Drosophila gravity-sensing and hearing , 2009, Nature.

[108]  P. Narins,et al.  Environmental Influences in the Evolution of Tetrapod Hearing Sensitivity and Middle Ear Tuning Environmental Factors and Hearing Measurements Related to Hearing Sensitivity Variability and Body Size the Biotic Environment Multiple Sensitivity Peaks Dynamic Middle Ear Tuning Diversity and Evolution , 2022 .

[109]  Sheryl Coombs,et al.  Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water , 2009, Journal of Experimental Biology.

[110]  David J. Anderson,et al.  Distinct sensory representations of wind and near-field sound in the Drosophila brain , 2009, Nature.

[111]  Shane P. Windsor,et al.  The influence of viscous hydrodynamics on the fish lateral-line system. , 2009, Integrative and comparative biology.

[112]  Sheryl Coombs,et al.  The Mechanosensory Lateral Line: Neurobiology and Evolution , 2011 .