Genetic characterization of primary and metastatic high-grade serous ovarian cancer tumors reveals distinct features associated with survival

[1]  R. Bourgon,et al.  Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. , 2021, Cancer cell.

[2]  Anushya Muruganujan,et al.  The Gene Ontology resource: enriching a GOld mine , 2020, Nucleic Acids Res..

[3]  Anushya Muruganujan,et al.  PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API , 2020, Nucleic Acids Res..

[4]  Shengli Yang,et al.  PRDX1 stimulates non-small-cell lung carcinoma to proliferate via the Wnt/β-Catenin signaling. , 2020, Panminerva medica.

[5]  D. Hershman,et al.  Trends in Primary Treatment and Median Survival Among Women With Advanced-Stage Epithelial Ovarian Cancer in the US From 2004 to 2016 , 2020, JAMA network open.

[6]  P. A. Futreal,et al.  Molecular Analysis of Clinically Defined Subsets of High-Grade Serous Ovarian Cancer , 2020, Cell reports.

[7]  J. Hartikainen,et al.  Comparative transcriptome analysis of matched primary and distant metastatic ovarian carcinoma , 2019, BMC Cancer.

[8]  Donghang Xu,et al.  Copy number variation is highly correlated with differential gene expression: a pan-cancer study , 2019, BMC Medical Genetics.

[9]  Paul Flicek,et al.  The International Genome Sample Resource (IGSR) collection of open human genomic variation resources , 2019, Nucleic Acids Res..

[10]  S. Lockwood,et al.  Ovarian Cancer: An Integrated Review. , 2019, Seminars in oncology nursing.

[11]  Christopher A. Miller,et al.  Shared cell of origin in a patient with Erdheim-Chester disease and acute myeloid leukemia , 2019, Haematologica.

[12]  Jin-yan Wang,et al.  LncRNAs in ovarian cancer. , 2019, Clinica chimica acta; international journal of clinical chemistry.

[13]  A. Oza,et al.  Landscape of genomic alterations in high-grade serous ovarian cancer from exceptional long- and short-term survivors , 2018, Genome Medicine.

[14]  A. Drilon,et al.  NTRK fusion-positive cancers and TRK inhibitor therapy , 2018, Nature Reviews Clinical Oncology.

[15]  Sherri,et al.  Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer , 2018, Cell reports.

[16]  Wyeth W. Wasserman,et al.  Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer , 2018, Cell.

[17]  Steven J. M. Jones,et al.  The Immune Landscape of Cancer , 2018, Immunity.

[18]  U. Testa,et al.  Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells , 2018, Medicines.

[19]  Chunlei Liu,et al.  ClinVar: improving access to variant interpretations and supporting evidence , 2017, Nucleic Acids Res..

[20]  A. Polotskaia,et al.  Identification, validation, and targeting of the mutant p53-PARP-MCM chromatin axis in triple negative breast cancer , 2017, npj Breast Cancer.

[21]  S. Ganesan,et al.  Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment , 2016, International journal of molecular sciences.

[22]  Yan Lu,et al.  MicroRNA and Long Non-Coding RNA in Ovarian Carcinoma: Translational Insights and Potential Clinical Applications , 2016, Cancer investigation.

[23]  Susana Banerjee,et al.  The Current Status of PARP Inhibitors in Ovarian Cancer , 2016, Tumori.

[24]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[25]  Ali Bashashati,et al.  Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer , 2016, Nature Genetics.

[26]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[27]  J. Ledermann,et al.  PARP inhibitors in ovarian cancer. , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.

[28]  Obi L. Griffith,et al.  GenVisR: Genomic Visualizations in R , 2016, bioRxiv.

[29]  Zheng Wang,et al.  Long non-coding RNAs as prognostic markers in human breast cancer , 2016, Oncotarget.

[30]  R. Wilson,et al.  INTEGRATE: gene fusion discovery using whole genome and transcriptome data , 2016, Genome research.

[31]  Obi L. Griffith,et al.  Genome Modeling System: A Knowledge Management Platform for Genomics , 2015, PLoS Comput. Biol..

[32]  Ash A. Alizadeh,et al.  Robust enumeration of cell subsets from tissue expression profiles , 2015, Nature Methods.

[33]  Che L. Martin,et al.  Proteome-wide analysis of mutant p53 targets in breast cancer identifies new levels of gain-of-function that influence PARP, PCNA, and MCM4 , 2015, Proceedings of the National Academy of Sciences.

[34]  Y. Song,et al.  Tumor evolution and intratumor heterogeneity of an epithelial ovarian cancer investigated using next-generation sequencing BMC Cancer Sample , 2015 .

[35]  Jeffrey T. Leek,et al.  Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction , 2014, Bioinform..

[36]  Yung-Hyun Choi,et al.  Elevation of human ERV3-1 env protein expression in colorectal cancer , 2014, Journal of Clinical Pathology.

[37]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[38]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[39]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[40]  M. Stratton,et al.  Deciphering Signatures of Mutational Processes Operative in Human Cancer , 2013, Cell reports.

[41]  Jonathan M Blackburn,et al.  Quality assessment and data handling methods for Affymetrix Gene 1.0 ST arrays with variable RNA integrity , 2013, BMC Genomics.

[42]  Wendy S. W. Wong,et al.  Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs , 2012, Bioinform..

[43]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[44]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[45]  Ken Chen,et al.  SomaticSniper: identification of somatic point mutations in whole genome sequencing data , 2012, Bioinform..

[46]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[47]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[48]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[49]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[50]  David D. L. Bowtell,et al.  The genesis and evolution of high-grade serous ovarian cancer , 2010, Nature Reviews Cancer.

[51]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[52]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[53]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[54]  S. Henderson,et al.  Predicting biomarkers for ovarian cancer using gene-expression microarrays , 2004, British Journal of Cancer.

[55]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[56]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[57]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[58]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.