Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots

[1]  Joo Sung Kim,et al.  Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes , 2022, Nature Nanotechnology.

[2]  T. Aida,et al.  Evidence of band filling in PbS colloidal quantum dot square superstructures. , 2021, Nanoscale.

[3]  Y. Arakawa,et al.  Semiconductor quantum dots: Technological progress and future challenges , 2021, Science.

[4]  V. Wood,et al.  Colloidal quantum dot electronics , 2021, Nature Electronics.

[5]  Jianjun Liu,et al.  Simple cubic self-assembly of PbS quantum dots by finely controlled ligand removal through gel permeation chromatography , 2021, Chemical science.

[6]  K. Nelson,et al.  All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses , 2021, Nature Nanotechnology.

[7]  A. Travesset,et al.  Perovskite-type superlattices from lead halide perovskite nanocubes , 2021, Nature.

[8]  V. Klimov,et al.  Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot , 2021, Nature Nanotechnology.

[9]  A. Morpurgo,et al.  Ionic gate spectroscopy of 2D semiconductors , 2021, Nature Reviews Physics.

[10]  J. Liao,et al.  Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles , 2021, Nature Nanotechnology.

[11]  C. Murray,et al.  Colloidal Quantum Dots as Platforms for Quantum Information Science. , 2020, Chemical reviews.

[12]  T. Okamoto,et al.  Two-dimensional hole gas in organic semiconductors , 2020, Nature Materials.

[13]  E. Kumacheva,et al.  Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots , 2020, Nature Nanotechnology.

[14]  A. Vedda,et al.  Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators , 2020, Nature Nanotechnology.

[15]  T. Hanrath,et al.  The coupled dynamics of colloidal nanoparticle spreading and self-assembly at a fluid-fluid interface. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[16]  F. Iskandar,et al.  On-demand tuning of charge accumulation and carrier mobility in quantum dot solids for electron transport and energy storage devices , 2020, NPG Asia Materials.

[17]  M. Kovalenko,et al.  Exclusive Electron Transport in Core@Shell PbTe@PbS Colloidal Semiconductor Nanocrystal Assemblies. , 2020, ACS nano.

[18]  P. Guyot-Sionnest,et al.  Quantum dot solids showing state-resolved band-like transport , 2020, Nature Materials.

[19]  T. Aida,et al.  Tunable electronic properties by ligand coverage control in PbS nanocrystal assemblies. , 2019, Nanoscale.

[20]  Joel K. W. Yang,et al.  Upconversion superburst with sub-2 μs lifetime , 2019, Nature Nanotechnology.

[21]  M. Law,et al.  Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice , 2019, Nature Materials.

[22]  Jaehoon Lim,et al.  Hot-electron dynamics in quantum dots manipulated by spin-exchange Auger interactions , 2019, Nature Nanotechnology.

[23]  M. Luisier,et al.  Charge transport in semiconductors assembled from nanocrystal quantum dots , 2019, Nature Communications.

[24]  Nitin Saxena,et al.  Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids. , 2019, The journal of physical chemistry letters.

[25]  E. Aydil,et al.  Metal-insulator transition in a semiconductor nanocrystal network , 2019, Science Advances.

[26]  G. Galli,et al.  Surface chemistry and buried interfaces in all-inorganic nanocrystalline solids , 2018, Nature Nanotechnology.

[27]  D. Gamelin,et al.  Degenerately n-Doped Colloidal PbSe Quantum Dots: Band Assignments and Electrostatic Effects. , 2018, Nano letters (Print).

[28]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[29]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[30]  Jiatao Zhang,et al.  Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants , 2018, Nature Nanotechnology.

[31]  D. Smilgies,et al.  Impact of Size Dispersity, Ligand Coverage, and Ligand Length on the Structure of PbS Nanocrystal Superlattices , 2018 .

[32]  Z. Hens,et al.  Ligand Displacement Exposes Binding Site Heterogeneity on CdSe Nanocrystal Surfaces , 2018 .

[33]  T. Hanrath,et al.  Entropic, Enthalpic, and Kinetic Aspects of Interfacial Nanocrystal Superlattice Assembly and Attachment , 2018 .

[34]  Kaifeng Wu,et al.  Towards zero-threshold optical gain using charged semiconductor quantum dots. , 2017, Nature nanotechnology.

[35]  C. Delerue,et al.  Transport Properties of a Two-Dimensional PbSe Square Superstructure in an Electrolyte-Gated Transistor , 2017, Nano letters.

[36]  E. Aydil,et al.  ZnO Nanocrystal Networks Near the Insulator-Metal Transition: Tuning Contact Radius and Electron Density with Intense Pulsed Light. , 2017, Nano letters.

[37]  Masaki Nakano,et al.  Endeavor of Iontronics: From Fundamentals to Applications of Ion‐Controlled Electronics , 2017, Advanced materials.

[38]  T. Hanrath,et al.  Formation of Epitaxially Connected Quantum Dot Solids: Nucleation and Coherent Phase Transition. , 2017, The journal of physical chemistry letters.

[39]  T. Aubert,et al.  Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals. , 2017, Nature nanotechnology.

[40]  M. Kovalenko,et al.  Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots. , 2016, Nature materials.

[41]  C. Detavernier,et al.  Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices. , 2016, ACS nano.

[42]  L. Kourkoutis,et al.  Charge transport and localization in atomically coherent quantum dot solids. , 2016, Nature materials.

[43]  A. P. Hammersley,et al.  FIT2D: a multi-purpose data reduction, analysis and visualization program , 2016 .

[44]  Detlef-Matthias Smilgies,et al.  Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. , 2016, Nature materials.

[45]  J. Grossman,et al.  Tunable and Energetically Robust PbS Nanoplatelets for Optoelectronic Applications , 2016 .

[46]  U. Kortshagen,et al.  Metal-insulator transition in films of doped semiconductor nanocrystals. , 2016, Nature materials.

[47]  B. Shklovskii,et al.  Hopping conductivity and insulator-metal transition in films of touching semiconductor nanocrystals , 2015, 1512.03369.

[48]  Zhang Jiang,et al.  GIXSGUI: a MATLAB toolbox for grazing‐incidence X‐ray scattering data visualization and reduction, and indexing of buried three‐dimensional periodic nanostructured films , 2015 .

[49]  Y. Niquet,et al.  Topological states in multi-orbital HgTe honeycomb lattices , 2015, Nature Communications.

[50]  Ivan Infante,et al.  Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties. , 2014, ACS nano.

[51]  V. Wood,et al.  Hole Mobility in Nanocrystal Solids as a Function of Constituent Nanocrystal Size. , 2014, The journal of physical chemistry letters.

[52]  S. Ossicini,et al.  Determination of the Electronic Energy Levels of Colloidal Nanocrystals using Field‐Effect Transistors and Ab‐Initio Calculations , 2014, Advanced materials.

[53]  C. Delerue,et al.  Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry , 2014, 1502.04886.

[54]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[55]  C. Delerue,et al.  Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two , 2013 .

[56]  M. Loi,et al.  Low Driving Voltage and High Mobility Ambipolar Field‐Effect Transistors with PbS Colloidal Nanocrystals , 2013, Advanced materials.

[57]  M. Dijkstra,et al.  Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. , 2013, Nano letters.

[58]  B. Korgel,et al.  Stacking of hexagonal nanocrystal layers during Langmuir-Blodgett deposition. , 2012, The journal of physical chemistry. B.

[59]  Philippe Guyot-Sionnest,et al.  Electrical Transport in Colloidal Quantum Dot Films. , 2012, The journal of physical chemistry letters.

[60]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[61]  Masashi Kawasaki,et al.  Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. , 2010, Journal of the American Chemical Society.

[62]  P. Guyot-Sionnest,et al.  Mott and Efros-Shklovskii variable range hopping in CdSe quantum dots films. , 2010, ACS nano.

[63]  K.-S. Cho,et al.  Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots , 2003, Nature.

[64]  Alexander A. Balandin,et al.  Miniband formation in a quantum dot crystal , 2001 .

[65]  A. McGaughey,et al.  Orientational order controls crystalline and amorphous thermal transport in superatomic crystals. , 2017, Nature materials.