Identification of fracture models based on phase field for crack propagation in heterogeneous lattices in a context of non-separated scales

The construction of a homogeneous medium equivalent to a heterogeneous one under quasi-brittle fracture is investigated in the case of non-separated scales. At the microscale, the phase field method to fracture is employed. At the scale of the homogeneous medium, another phase field model either isotropic or anisotropic, depending on the microscale crack length and on the underlying microstructure, is assumed. The coefficients of the unknown phase field model for the homogeneous model are identified through the mechanical response of a sample subjected to fracture whose microstructure is fully described and estimated numerically. We show that the identified models can reproduce both the mechanical force response as well as overall crack paths with good accuracy in other geometrical configurations than the one used to identify the homogeneous model. Several numerical examples, involving cracking in regular lattices of both hard particles and pores, are presented to show the potential of the technique.

[1]  Cv Clemens Verhoosel,et al.  Gradient damage vs phase-field approaches for fracture: Similarities and differences , 2016 .

[2]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[3]  T. T. Nguyen,et al.  On the choice of parameters in the phase field method for simulating crack initiation with experimental validation , 2016, International Journal of Fracture.

[4]  B. D. Reddy,et al.  Phase‐field modelling of fracture in single crystal plasticity , 2016 .

[5]  Daniel Kienle,et al.  Phase field modeling of fracture in anisotropic brittle solids , 2017 .

[6]  Christian Miehe,et al.  Comparison of two algorithms for the computation of fourth-order isotropic tensor functions , 1998 .

[7]  Mgd Marc Geers,et al.  A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework , 2012, International Journal of Fracture.

[8]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[9]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[10]  J. Knap,et al.  Nonlinear phase field theory for fracture and twinning with analysis of simple shear , 2015 .

[11]  J. Knap,et al.  Phase Field Modeling and Simulation of Coupled Fracture and Twinning in Single Crystals and Polycrystals , 2016 .

[12]  Emmanuel Roubin,et al.  Continuum approach to computational multiscale modeling of propagating fracture , 2015 .

[13]  Philippe H. Geubelle,et al.  Multiscale cohesive failure modeling of heterogeneous adhesives , 2008 .

[14]  Paul Steinmann,et al.  Computational multiscale modelling of heterogeneous material layers , 2009 .

[15]  Harm Askes,et al.  Representative volume: Existence and size determination , 2007 .

[16]  Laurent Champaney,et al.  A multiscale extended finite element method for crack propagation , 2008 .

[17]  Ralf Müller,et al.  On degradation functions in phase field fracture models , 2015 .

[18]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[19]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[20]  Thi Bach Tuyet Dang,et al.  Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach , 2017 .

[21]  Christian Miehe,et al.  Phase Field Modeling of Fracture in Multi-Physics Problems. Part II. Coupled Brittle-to-Ductile Failure Criteria and Crack Propagation in Thermo-Elastic-Plastic Solids , 2015 .

[22]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[23]  Philippe H. Geubelle,et al.  Coupled multi‐scale cohesive modeling of failure in heterogeneous adhesives , 2010 .

[24]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[25]  Julien Réthoré,et al.  Phase field modelling of anisotropic crack propagation , 2017 .

[26]  M. Dresselhaus,et al.  Note on sufficient symmetry conditions for isotropy of the elastic moduli tensor , 1991 .

[27]  Jean-Jacques Marigo,et al.  The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models , 2011 .

[28]  Ted Belytschko,et al.  Multiscale aggregating discontinuities: A method for circumventing loss of material stability , 2008 .

[29]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[30]  Kaushik Bhattacharya,et al.  Effective toughness of heterogeneous media , 2014 .

[31]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[32]  Julien Réthoré,et al.  Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials , 2017 .

[33]  Thomas J. R. Hughes,et al.  A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework , 2014 .

[34]  H. Waisman,et al.  AN ADAPTIVE DOMAIN DECOMPOSITION PRECONDITIONER FOR CRACK PROPAGATION PROBLEMS MODELED BY XFEM , 2013 .

[35]  J. Clayton,et al.  Defects in nonlinear elastic crystals: differential geometry, finite kinematics, and second‐order analytical solutions , 2015 .

[36]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[37]  R. Müller,et al.  A phase field model for fracture , 2008 .

[38]  Jin Ma,et al.  Multiscale simulation of major crack/minor cracks interplay with the corrected XFEM , 2017 .

[39]  Ted Belytschko,et al.  A multiscale projection method for macro/microcrack simulations , 2007 .

[40]  Gilles Pijaudier-Cabot,et al.  Isotropic and anisotropic descriptions of damage in concrete structures , 1999 .

[41]  Vinh Phu Nguyen,et al.  Homogenization-based multiscale crack modelling: from micro diffusive damage to macro cracks , 2011 .

[42]  E. Rudoy Domain decomposition method for crack problems with nonpenetration condition , 2016 .

[43]  Julien Yvonnet,et al.  A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure , 2015 .

[44]  Julien Yvonnet,et al.  Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations , 2016 .

[45]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[46]  Mgd Marc Geers,et al.  Multi‐scale computational homogenization–localization for propagating discontinuities using X‐FEM , 2015 .