Minimizing the Second Eigenvalue of the Laplace Operator with Dirichlet Boundary Conditions

In this paper, we are interested in the minimization of the second eigenvalue of the Laplacian with Dirichlet boundary conditions amongst convex plane domains with given area. The natural candidate to be the optimum was the ``stadium'', a convex hull of two identical tangent disks. We refute this conjecture. Nevertheless, we prove the existence of a minimizer. We also study some qualitative properties of the minimizer (regularity, geometric properties).

[1]  Ura Cnrs,et al.  Continuity with respect to the domain for the Laplacian : a survey , 1994 .

[2]  Edward J. Haug,et al.  Design Sensitivity Analysis in Structural Mechanics.II. Eigenvalue Variations , 1980 .

[3]  Dorin Bucur,et al.  N-Dimensional Shape Optimization under Capacitary Constraint , 1995 .

[4]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[5]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[6]  J. Zolésio,et al.  Springer series in Computational Mathematics , 1992 .

[7]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[8]  B. Rousselet Design sensitivity analysis in structural mechanics , 1981, Nonlinear Analysis Theory and Applications.

[9]  B. Rousselet,et al.  Shape design sensitivity of a membrane , 1983 .

[10]  Antoine Henrot,et al.  Le stade ne minimise pas λ2 parmi les ouverts convexes du plan , 2001 .

[11]  Isabel N. Figueiredo,et al.  On the attainable eigenvalues of the Laplace operator , 1999 .

[12]  Giuseppe Buttazzo,et al.  An existence result for a class of shape optimization problems , 1993 .

[13]  Antonios D. Melas On the nodal line of the second eigenfunction of the Laplacian in $\mathbf{R}^2$ , 1992 .

[14]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[15]  Mark S. Ashbaugh,et al.  Open Problems on Eigenvalues of the Laplacian , 1999 .

[16]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[17]  J. Keller,et al.  Range of the first two eigenvalues of the laplacian , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  Elliptical membranes with smallest second eigenvalue , 1973 .

[19]  Peletier,et al.  An example of non-convex minimization and an application to Newton's problem of the body of least resistance , 1999 .

[20]  Dorin Bucur,et al.  Variational Methods in some Shape Optimization Problems , 2002 .

[21]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[22]  Minimization problems for eigenvalues of the Laplacian , 2003 .

[23]  D. Bucur Regularity of Optimal Convex Shapes , 2003 .

[24]  J. Simon Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .

[25]  S. Cox EXTREMAL EIGENVALUE PROBLEMS FOR STARLIKE PLANAR DOMAINS , 1995 .

[26]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[27]  Giovanni Alessandrini,et al.  Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains , 1994 .

[28]  George Polya,et al.  On the characteristic frequencies of a symmetric membrane , 1955 .

[29]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .