Analytical and numerical advances in radial basis functions
暂无分享,去创建一个
[1] Gabriele Steidl,et al. Fast and stable algorithms for discrete spherical Fourier transforms , 1998 .
[2] M. Buhmann. On quasi-interpolation with radial basis functions , 1993 .
[3] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[4] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[5] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[6] Bengt Fornberg,et al. On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..
[7] H. Kreiss,et al. Comparison of accurate methods for the integration of hyperbolic equations , 1972 .
[8] Stephen J. Thomas,et al. The NCAR Spectral Element Climate Dynamical Core: Semi-Implicit Eulerian Formulation , 2005, J. Sci. Comput..
[9] Paul N. Swarztrauber. Spectral Transform Methods for Solving the Shallow-Water Equations on the Sphere , 1996 .
[10] G. L. Browning,et al. A comparison of three numerical methods for solving differential equations on the sphere , 1989 .
[11] C. Shu,et al. Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .
[12] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[13] R. Schaback,et al. Characterization and construction of radial basis functions , 2001 .
[14] J. Hack,et al. Spectral transform solutions to the shallow water test set , 1995 .
[15] Bengt Fornberg,et al. Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids , 2005, Adv. Comput. Math..
[16] B. Fornberg,et al. The Gibbs Phenomenon for Radial Basis Functions , 2006 .
[17] Bengt Fornberg,et al. Comparison of finite difference‐ and pseudospectral methods for convective flow over a sphere , 1997 .
[18] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .
[19] B. Fornberg. On a Fourier method for the integration of hyperbolic equations , 1975 .
[20] Ian H. Sloan,et al. How good can polynomial interpolation on the sphere be? , 2001, Adv. Comput. Math..
[21] R. Schaback. Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .
[22] B. Fornberg,et al. Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .
[23] Bengt Fornberg,et al. Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..
[24] Tilmann Gneiting,et al. Normal scale mixtures and dual probability densities , 1997 .
[25] Willi Freeden,et al. Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .
[26] B. Fornberg,et al. Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .
[27] Mark Tygert,et al. Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..
[28] M. Powell,et al. Radial basis function interpolation on an infinite regular grid , 1990 .
[29] Philip E. Merilees,et al. Numerical experiments with the pseudospectral method in spherical coordinates , 1974 .
[30] Robin J. Y McLeod,et al. Geometry and Interpolation of Curves and Surfaces , 1998 .
[31] Natasha Flyer,et al. Transport schemes on a sphere using radial basis functions , 2007, J. Comput. Phys..
[32] John M. Dennis,et al. A Comparison of Two Shallow-Water Models with Nonconforming Adaptive Grids , 2008 .
[33] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[34] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[35] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[36] Stephen J. Thomas,et al. A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .
[37] Jungho Yoon,et al. Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..
[38] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[39] N SwarztrauberPaul,et al. A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .
[40] P. Swarztrauber,et al. Fast Shallow-Water Equation Solvers in Latitude-Longitude Coordinates , 1998 .
[41] Natasha Flyer,et al. Exact polynomial reproduction for oscillatory radial basis functions on infinite lattices , 2006, Comput. Math. Appl..
[42] W. Madych,et al. Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .
[43] 곽순섭,et al. Generalized Functions , 2006, Theoretical and Mathematical Physics.
[44] Elisabeth Larsson,et al. A new class of oscillatory radial basis functions , 2006, Comput. Math. Appl..
[45] G. Arfken. Mathematical Methods for Physicists , 1967 .
[46] Francis X. Giraldo,et al. A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests , 2004 .
[47] D. Healy,et al. Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .
[48] Philip E. Merilees,et al. The pseudospectral approximation applied to the shallow water equations on a sphere , 1973 .
[49] P. Swarztrauber,et al. A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .
[50] Nira Dyn,et al. Spectral convergence of multiquadric interpolation , 1993, Proceedings of the Edinburgh Mathematical Society.
[51] Clive Temperton. On Scalar and Vector Transform Methods for Global Spectral Models , 1991 .
[52] Andrew D. Back,et al. Radial Basis Functions , 2001 .
[53] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[54] B. Fornberg,et al. A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .
[55] Ward Cheney,et al. A course in approximation theory , 1999 .
[56] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[57] Tobin A. Driscoll,et al. Eigenvalue stability of radial basis function discretizations for time-dependent problems , 2006, Comput. Math. Appl..
[58] E. Kansa,et al. Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .
[59] Martin J. Mohlenkamp. A fast transform for spherical harmonics , 1997 .
[60] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[61] M. Taylor. The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .
[62] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[63] R. E. Carlson,et al. The parameter R2 in multiquadric interpolation , 1991 .
[64] Bengt Fornberg,et al. A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..
[65] James J. Hack,et al. Description of a Global Shallow Water Model Based on the Spectral Transform Method , 1992 .