Efficient Numerical Computation of Time-Fractional Nonlinear Schrödinger Equations in Unbounded Domain

The aim of this paper is to derive an efficient scheme for solving one-dimensional time-fractional nonlinear Schrodinger equations set in unbounded domains. We first derive some absorbing boundary conditions for the fractional system by using the unified approach introduced in [57,58] and a linearization procedure. Then, the initial boundary-value problem for the fractional system with ABCs is discretized and the error estimate O(h 2 + τ) is stated. To accelerate the scheme in time, the fractional derivative is approximated through a linearized L1-scheme. Finally, we end the paper by some numerical simulations to validate the properties (accuracy and efficiency) of the derived scheme. In addition, we illustrate the behavior of the solution by reporting a few simulations for various parameter values of the fractional order 0 < α < 1, nonlinearities and potentials.

[1]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[2]  Michael K. Ng,et al.  A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations , 2015, J. Comput. Phys..

[3]  Nasser-eddine Tatar,et al.  Artificial boundary condition for a modified fractional diffusion problem , 2015 .

[4]  Jiwei Zhang,et al.  Unconditionally Convergent L1-Galerkin FEMs for Nonlinear Time-Fractional Schrödinger Equations , 2017, SIAM J. Sci. Comput..

[5]  Ali H. Bhrawy,et al.  A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations , 2015, J. Comput. Phys..

[6]  Björn Engquist,et al.  Higher order paraxial wave equation approximations in heterogenous media , 1988 .

[7]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[8]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[10]  Christophe Besse,et al.  Absorbing Boundary Conditions for General Nonlinear Schrödinger Equations , 2011, SIAM J. Sci. Comput..

[11]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[12]  Mingyu Xu,et al.  Generalized fractional Schrödinger equation with space-time fractional derivatives , 2007 .

[13]  Zheng,et al.  APPROXIMATION, STABILITY AND FAST EVALUATION OF EXACT ARTIFICIAL BOUNDARY CONDITION FOR THE ONE-DIMENSIONAL HEAT EQUATION , 2007 .

[14]  Alexander Iomin,et al.  Fractional-time quantum dynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  A. Ionescu,et al.  Nonlinear fractional Schrödinger equations in one dimension , 2012, 1209.4943.

[16]  Leslie Greengard,et al.  Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation , 2000, SIAM J. Numer. Anal..

[17]  D. Kusnezov,et al.  Quantum Levy Processes and Fractional Kinetics , 1999, chao-dyn/9901002.

[18]  Najeeb Alam Khan,et al.  Approximate Solutions to Time-Fractional Schrödinger Equation via Homotopy Analysis Method , 2012 .

[19]  Xiaonan Wu,et al.  Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations: Two-dimensional case. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[21]  M. Naber Time fractional Schrödinger equation , 2004, math-ph/0410028.

[22]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[23]  Yong Zhang,et al.  On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions , 2015, J. Comput. Phys..

[24]  Fractional Schrodinger wave equation and fractional uncertainty principle , 2007 .

[25]  B. Achar,et al.  Time Fractional Schrodinger Equation Revisited , 2013 .

[26]  Zhimin Zhang,et al.  The Numerical Computation of the Time Fractional Schrödinger Equation on an Unbounded Domain , 2017, Comput. Methods Appl. Math..

[27]  Kuska Absorbing boundary conditions for the Schrödinger equation on finite intervals. , 1992, Physical review. B, Condensed matter.

[28]  Christophe Besse,et al.  Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential , 2013, Numerische Mathematik.

[29]  Allaberen Ashyralyev,et al.  A stable numerical method for multidimensional time fractional Schrödinger equations , 2016, Comput. Math. Appl..

[30]  Zhi-Zhong Sun,et al.  The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions , 2006, J. Comput. Phys..

[31]  Xavier Antoine,et al.  A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations , 2017 .

[32]  Zhimin Zhang,et al.  Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations , 2015, 1511.03453.

[33]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[34]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[35]  Christophe Besse,et al.  Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential , 2009, J. Comput. Phys..

[36]  Hermann Brunner,et al.  Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain , 2014, J. Comput. Phys..

[37]  Jiwei Zhang,et al.  Analysis of $L1$-Galerkin FEMs for time-fractional nonlinear parabolic problems , 2016, 1612.00562.

[38]  Mostafa Abbaszadeh,et al.  The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics , 2013 .

[39]  Jianping Dong,et al.  Space-time fractional Schrödinger equation with time-independent potentials , 2008 .

[40]  Xin Lu,et al.  Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub‐diffusion equations , 2015, Numer. Linear Algebra Appl..

[41]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Z. Odibat,et al.  Analytic study on time-fractional Schrödinger equations: exact solutions by GDTM , 2008 .

[43]  Zaid M. Odibat,et al.  Approximations of fractional integrals and Caputo fractional derivatives , 2006, Appl. Math. Comput..

[44]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[45]  Xiaonan Wu,et al.  Artificial Boundary Method , 2013 .

[46]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[47]  Weihua Deng,et al.  Numerical analysis and physical simulations for the time fractional radial diffusion equation , 2011, Comput. Math. Appl..

[48]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[49]  B. Guo,et al.  Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation , 2012 .

[50]  Christian Lubich,et al.  Fast Convolution for Nonreflecting Boundary Conditions , 2002, SIAM J. Sci. Comput..

[51]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[52]  Changpin Li,et al.  Numerical approaches to fractional calculus and fractional ordinary differential equation , 2011, J. Comput. Phys..

[53]  Zhi-Zhong Sun,et al.  A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..

[54]  John R. Dea Absorbing boundary conditions for the fractional wave equation , 2013, Appl. Math. Comput..

[55]  Christophe Besse,et al.  Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation , 2003 .

[56]  Joseph A. Eichholz,et al.  Approximation , 2019, An Introduction to Computational Science.

[57]  Seyed Mohammad Hosseini,et al.  Obtaining artificial boundary conditions for fractional sub-diffusion equation on space two-dimensional unbounded domains , 2014, Comput. Math. Appl..

[58]  Quantum Lévy Propagators , 2000 .

[59]  Yanzhi Zhang,et al.  Computing the ground and first excited states of the fractional Schrodinger equation in an infinite potential well , 2014, 1405.0409.

[60]  Wanrong Cao,et al.  Time-Splitting Schemes for Fractional Differential Equations I: Smooth Solutions , 2015, SIAM J. Sci. Comput..

[61]  Y. Lu A Padé Approximation Method for Square Roots of Symmetric Positive Definite Matrices , 1998 .

[62]  Leilei Wei,et al.  Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation , 2012 .

[63]  Igor Moret,et al.  Solving the time-fractional Schrödinger equation by Krylov projection methods , 2015, J. Comput. Phys..

[64]  Jiwei Zhang,et al.  On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross–Pitaevskii equations , 2018, Int. J. Comput. Math..

[65]  Christophe Besse,et al.  A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .

[66]  Nick Laskin,et al.  Fractals and quantum mechanics. , 2000, Chaos.

[67]  Xiaonan Wu,et al.  Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.