Mitochondrial PARP1 regulates NAD+-dependent poly ADP-ribosylation of mitochondrial nucleoids

[1]  A. Emili,et al.  Neuralized-like protein 4 (NEURL4) mediates ADP-ribosylation of mitochondrial proteins , 2022, The Journal of cell biology.

[2]  S. Sengupta,et al.  MITOL-dependent ubiquitylation negatively regulates the entry of PolγA into mitochondria , 2021, PLoS biology.

[3]  Patrick G. A. Pedrioli,et al.  Mitochondrial NAD+ Controls Nuclear ARTD1-Induced ADP-Ribosylation , 2021, Molecular cell.

[4]  A. Bürkle,et al.  Mitochondria are devoid of poly(ADP‐ribose)polymerase‐1, but harbor its product oligo(ADP‐ribose) , 2021, Journal of cellular biochemistry.

[5]  N. Garg,et al.  Poly(ADP-ribose) polymerase 1 regulates mitochondrial DNA repair in an NAD-dependent manner , 2021, The Journal of biological chemistry.

[6]  A. Emili,et al.  ADP-ribosylation of mitochondrial proteins is mediated by Neuralized-like protein 4 (NEURL4) , 2020, bioRxiv.

[7]  Vinay Ayyappan,et al.  ADPriboDB 2.0: an updated database of ADP-ribosylated proteins , 2020, Nucleic Acids Res..

[8]  K. Das,et al.  Structure, mechanism, and regulation of mitochondrial DNA transcription initiation , 2020, The Journal of Biological Chemistry.

[9]  D. Sabatini,et al.  MCART1/SLC25A51 is required for mitochondrial NAD transport , 2020, Science Advances.

[10]  Vinay Ayyappan,et al.  ADPriboDB v2.0: An Updated Database of ADP-ribosylated Proteins , 2020, bioRxiv : the preprint server for biology.

[11]  F. Johnson,et al.  SLC25A51 is a mammalian mitochondrial NAD+ transporter , 2020, Nature.

[12]  M. Behrens,et al.  Nicotinamide, a Poly [ADP-Ribose] Polymerase 1 (PARP-1) Inhibitor, as an Adjunctive Therapy for the Treatment of Alzheimer’s Disease , 2020, Frontiers in Aging Neuroscience.

[13]  Anton Nekrutenko,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update , 2020, Nucleic Acids Res..

[14]  M. Mattson,et al.  NAD+ in Brain Aging and Neurodegenerative Disorders. , 2019, Cell metabolism.

[15]  H. van Attikum,et al.  PARP Inhibitor Resistance: A Tug-of-War in BRCA-Mutated Cells. , 2019, Trends in cell biology.

[16]  N. Klimova,et al.  Interplay between NAD+ and acetyl‑CoA metabolism in ischemia-induced mitochondrial pathophysiology. , 2019, Biochimica et biophysica acta. Molecular basis of disease.

[17]  V. Bohr,et al.  Cockayne syndrome group B deficiency reduces H3K9me3 chromatin remodeler SETDB1 and exacerbates cellular aging. , 2019, Nucleic acids research.

[18]  L. Ferrucci,et al.  Assessment of NAD+metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle. , 2019, Analytical biochemistry.

[19]  D. Filippov,et al.  ELTA: Enzymatic Labeling of Terminal ADP-Ribose. , 2019, Molecular cell.

[20]  R. Ebright,et al.  Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase , 2018, eLife.

[21]  A. Dinda,et al.  SIRT-3 Modulation by Resveratrol Improves Mitochondrial Oxidative Phosphorylation in Diabetic Heart through Deacetylation of TFAM , 2018, Cells.

[22]  Yuling Chen,et al.  SIRT3 Overexpression Inhibits Growth of Kidney Tumor Cells and Enhances Mitochondrial Biogenesis. , 2018, Journal of proteome research.

[23]  W. Haefeli,et al.  Identification, Biosynthesis, and Decapping of NAD-Capped RNAs in B. subtilis. , 2018, Cell reports.

[24]  N. Garg,et al.  PARP1 depletion improves mitochondrial and heart function in Chagas disease: Effects on POLG dependent mtDNA maintenance , 2018, PLoS pathogens.

[25]  M. Hashemi Shabestari,et al.  Acetylation and phosphorylation of human TFAM regulate TFAM–DNA interactions via contrasting mechanisms , 2018, Nucleic acids research.

[26]  J. Baur,et al.  NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. , 2017, Cell metabolism.

[27]  M. Hottiger,et al.  ADP-ribose-specific chromatin-affinity purification for investigating genome-wide or locus-specific chromatin ADP-ribosylation , 2017, Nature Protocols.

[28]  F. Gallyas,et al.  PARP inhibition protects mitochondria and reduces ROS production via PARP‐1‐ATF4‐MKP‐1‐MAPK retrograde pathway , 2017, Free radical biology & medicine.

[29]  Xinfu Jiao,et al.  5′ End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding , 2017, Cell.

[30]  R. Parker,et al.  Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae , 2016, Proceedings of the National Academy of Sciences.

[31]  C. Szabó,et al.  Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work. , 2016, Free radical biology & medicine.

[32]  R. Kuiper,et al.  Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells , 2016, Nucleic acids research.

[33]  Jinu Kim,et al.  Poly(ADP-ribose) polymerase 1 contributes to oxidative stress through downregulation of sirtuin 3 during cisplatin nephrotoxicity , 2016, Anatomy & cell biology.

[34]  Melissa L. Stewart,et al.  Biosensor reveals multiple sources for mitochondrial NAD+ , 2016, Science.

[35]  Xiaochun Yu,et al.  Functions of PARylation in DNA Damage Repair Pathways , 2016, Genom. Proteom. Bioinform..

[36]  Jie Yan,et al.  Role of Sirt3 in mitochondrial biogenesis and developmental competence of human in vitro matured oocytes. , 2016, Human reproduction.

[37]  T. Baubec,et al.  Analysis of Chromatin ADP-Ribosylation at the Genome-wide Level and at Specific Loci by ADPr-ChAP. , 2016, Molecular cell.

[38]  M. Hottiger Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell Differentiation, and Epigenetics. , 2015, Annual review of biochemistry.

[39]  Hana Cahová,et al.  NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs , 2014, Nature.

[40]  S. Mitra,et al.  Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function , 2014, Nucleic acids research.

[41]  R. de Cabo,et al.  A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. , 2014, Cell metabolism.

[42]  C. Coletta,et al.  Regulation of Mitochondrial Poly(ADP-Ribose) Polymerase Activation by the β-Adrenoceptor/cAMP/Protein Kinase A Axis during Oxidative Stress , 2014, Molecular Pharmacology.

[43]  Y. Oike,et al.  TMEM65 is a mitochondrial inner-membrane protein , 2014, PeerJ.

[44]  B. Wold,et al.  Genome-Wide Analysis Reveals Coating of the Mitochondrial Genome by TFAM , 2013, PloS one.

[45]  L. Guarente,et al.  The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling , 2013, Cell.

[46]  R. Gilkerson,et al.  The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. , 2013, Cold Spring Harbor perspectives in biology.

[47]  Emma Lundberg,et al.  Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells , 2013, Nature Methods.

[48]  M. Solà,et al.  U-turn DNA bending by human mitochondrial transcription factor A. , 2013, Current opinion in structural biology.

[49]  D. Temiakov,et al.  Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. , 2013, Molecular cell.

[50]  Y. Pommier,et al.  Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. , 2012, Cancer research.

[51]  E. Rajnavölgyi,et al.  Hydrogen peroxide-induced poly(ADP-ribosyl)ation regulates osteogenic differentiation-associated cell death. , 2012, Free radical biology & medicine.

[52]  J. Kolesar,et al.  Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. , 2012, Biochimica et biophysica acta.

[53]  L. Foster,et al.  Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress , 2012, Nucleic acids research.

[54]  D. Dewitt,et al.  Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress. , 2012, Biochemical pharmacology.

[55]  J. Weigelt,et al.  Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors , 2012, Nature Biotechnology.

[56]  J. Auwerx,et al.  PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. , 2011, Cell metabolism.

[57]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[58]  Tao Ye,et al.  seqMINER: an integrated ChIP-seq data interpretation platform , 2010, Nucleic acids research.

[59]  T. Vanden Hoek,et al.  Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. , 2010, Free radical biology & medicine.

[60]  S. Ledoux,et al.  Mitochondrial DNA Damage Initiates a Cell Cycle Arrest by a Chk2-associated Mechanism in Mammalian Cells , 2009, The Journal of Biological Chemistry.

[61]  D. Berg,et al.  Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. , 2009, Human molecular genetics.

[62]  David R. Liu,et al.  LC/MS analysis of cellular RNA reveals NAD-linked RNA , 2009, Nature chemical biology.

[63]  M. Rossi,et al.  Mitochondrial Localization of PARP-1 Requires Interaction with Mitofilin and Is Involved in the Maintenance of Mitochondrial DNA Integrity* , 2009, The Journal of Biological Chemistry.

[64]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[65]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[66]  Guy G. Poirier,et al.  Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes , 2008, Nucleic acids research.

[67]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[68]  G. Dianov,et al.  Poly ADP-ribose polymerase-1: an international molecule of mystery. , 2008, DNA repair.

[69]  C. Gustafsson,et al.  DNA replication and transcription in mammalian mitochondria. , 2007, Annual review of biochemistry.

[70]  Stuart Gillies,et al.  Menadione-induced Reactive Oxygen Species Generation via Redox Cycling Promotes Apoptosis of Murine Pancreatic Acinar Cells* , 2006, Journal of Biological Chemistry.

[71]  D. A. Clayton,et al.  Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. , 2006, Molecular cell.

[72]  N. Hamasaki,et al.  Mitochondrial Nucleoid and Transcription Factor A , 2004, Annals of the New York Academy of Sciences.

[73]  Simon C Watkins,et al.  Intra-mitochondrial Poly(ADP-ribosylation) Contributes to NAD+ Depletion and Cell Death Induced by Oxidative Stress* , 2003, The Journal of Biological Chemistry.

[74]  G. Gadaleta,et al.  Acetylation and level of mitochondrial transcription factor A in several organs of young and old rats. , 2003, Biochemical and biophysical research communications.

[75]  H. Jacobs,et al.  Biased Incorporation of Ribonucleotides on the Mitochondrial L-Strand Accounts for Apparent Strand-Asymmetric DNA Replication , 2002, Cell.

[76]  C. Gustafsson,et al.  Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA , 2002, Nature Genetics.

[77]  N. Hamasaki,et al.  Regulation of mitochondrial D‐loops by transcription factor A and single‐stranded DNA‐binding protein , 2002, EMBO reports.

[78]  M. Smulson,et al.  Poly(ADP-ribose) polymerase facilitates the repair of N-methylpurines in mitochondrial DNA. , 2000, Diabetes.

[79]  K. Davies,et al.  Mitochondrial free radical generation, oxidative stress, and aging. , 2000, Free radical biology & medicine.

[80]  G. Poirier,et al.  Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. , 1999, The Biochemical journal.

[81]  M. Colombini,et al.  VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. , 1997, Biophysical journal.

[82]  B. Van Houten,et al.  Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[83]  S. Linn,et al.  Purification of All Forms of HeLa Cell Mitochondrial DNA and Assessment of Damage to It Caused by Hydrogen Peroxide Treatment of Mitochondria or Cells (*) , 1995, The Journal of Biological Chemistry.

[84]  C. Vascotto,et al.  [Letter to the Editor] Isolation of mitochondria is necessary for precise quantification of mitochondrial DNA damage in human carcinoma samples. , 2017, BioTechniques.

[85]  E. H. Howlett,et al.  PCR based determination of mitochondrial DNA copy number in multiple species. , 2015, Methods in molecular biology.

[86]  D. Kang,et al.  Methods for assessing binding of mitochondrial transcription factor A (TFAM) to DNA. , 2009, Methods in molecular biology.

[87]  M. Hottiger,et al.  The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. , 2008, Frontiers in bioscience : a journal and virtual library.

[88]  D. A. Clayton,et al.  Replication and transcription of vertebrate mitochondrial DNA. , 1991, Annual review of cell biology.