(An analysis of the potential performance and economic characteristics of several laser fusion breeder reactor (i.e., fusion-fission hybrid) fueled electricity generation systems has been performed. Fusion breeders resulting from several recent conceptual design studies are considered. These are distinguished from one another by the utilization of one of several generic breeder blanket options including a uranium fast fission blanket, a thorium fast fission blanket, a uranium-thorium fast fission blanket, and a thorium-suppressed fission blanket (first time introduced). On the fission side of the system, light water reactors (LWRs), which primarily burn /sup 233/U (but also some plutonium), are considered.) The fission fuel cycle characteristics and relative proliferation resistance of the various symbiotic electricity generation systems are examined. The results of the economic analysis indicate that systems utilizing LWRs and any of the four breeder blanket concepts can produce electricity for about25 to 35% above the cost of electricity produced by a new LWR operating on the current once-through fuel cycle. The laser fusion breeders are predicted to become competitive (as an LWR fuel source) with conventional mined sources of U/sub 3/O/sub 8/ when the price of U/sub 3/O/sub 8/ reaches about $300/kg (1980 dollars). The results suggest that fusion breedersmore » could supply most or all of our fissile fuel makeup requirements within about20 yr after commercial introduction (possibly in 2010) and have nearly unlimited capabilities to support a growing system of LWRs or advanced converter reactors.« less
[1]
James A. Maniscalco,et al.
Uranium-233 Breeding and Neutron Multiplying Blankets for Fusion Reactors
,
1976
.
[2]
C. E. Till,et al.
Alternative Fuel Cycle Options : Performance Characteristics and Impact on Nuclear Power Growth Potential
,
1977
.
[4]
T. H. Pigford,et al.
Denatured Fuel Cycles for International Safeguards
,
1978
.
[5]
Theodore B. Taylor,et al.
Security Implications of Alternarive Fission Futuures: Use of thorium could reduce the security and proliferation hazards of nuclear breeders
,
1976
.
[6]
James A. Maniscalco,et al.
Fusion-fission hybrid concepts for laser-induced fusion
,
1976
.
[7]
L. M. Lidsky,et al.
Fission-fusion systems: hybrid, symbiotic and augean
,
1975
.
[8]
J. R. Kimlinger,et al.
TARTNP: a coupled neutron--photon Monte Carlo transport code. [10-/sup 9/ to 20 MeV; in LLL FORTRAN]
,
1976
.