OptiMUSIG: An Optimized Gray Level Image Segmentor

A multilevel sigmoidal (MUSIG) activation function is efficient in segmenting multilevel images. The function uses equal and fixed class responses, assuming the homogeneity of image information content. In this article, a novel approach for generating optimized class responses of the MUSIG activation function, is proposed. Three different types of objective function are used to measure the quality of the segmentation in the proposed genetic algorithm based optimization method. Results of segmentation of two real life images by the optimized MUSIG (OptiMUSIG) activation function with optimized class responses show better performances over the MUSIG activation function with equal and fixed responses.

[1]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[2]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[3]  Mongi A. Abidi,et al.  Segmentation of range images via data fusion and morphological watersheds , 1996, Pattern Recognit..

[4]  C. A. Murthy,et al.  In search of optimal clusters using genetic algorithms , 1996, Pattern Recognit. Lett..

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  X Hu,et al.  Analysis of functional magnetic resonance imaging data using self‐organizing mapping with spatial connectivity , 1999, Magnetic resonance in medicine.

[7]  Aly A. Farag,et al.  Two-stage neural network for volume segmentation of medical images , 1997, Pattern Recognit. Lett..

[8]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Sanghamitra Bandyopadhyay,et al.  Pattern classification with genetic algorithms , 1995, Pattern Recognit. Lett..

[10]  Sankar K. Pal,et al.  Self-organization for object extraction using a multilayer neural network and fuzziness measures , 1993, IEEE Trans. Fuzzy Syst..

[11]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[12]  N. Dodd,et al.  Optimisation of network structure using genetic techniques , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[13]  Quanli Liu,et al.  A Medical Image Segmentation Method Based on SOM and Wavelet Transforms , 2005 .

[14]  Laurence Tianruo Yang,et al.  Fuzzy Logic with Engineering Applications , 1999 .

[15]  Martin D. Levine,et al.  Dynamic Measurement of Computer Generated Image Segmentations , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Peter Rockett,et al.  The training of neural classifiers with condensed datasets , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Ujjwal Maulik,et al.  Self organizing neural network (SONN) based gray scale object extractor with a multilevel sigmoidal (MUSIG) activation function , 2008 .

[18]  Chuan-Yu Chang,et al.  A hierarchical genetic algorithm based approach for image segmentation , 2004, IEEE International Conference on Networking, Sensing and Control, 2004.

[19]  Edwin N. Cook,et al.  Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks , 1997, IEEE Transactions on Medical Imaging.

[20]  Paola Campadelli,et al.  Quantitative evaluation of color image segmentation results , 1998, Pattern Recognit. Lett..

[21]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[22]  Sanghamitra Bandyopadhyay,et al.  Genetic algorithms for generation of class boundaries , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[23]  Bir Bhanu,et al.  Adaptive image segmentation using a genetic algorithm , 1989, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[25]  Hui Zhang,et al.  An entropy-based objective evaluation method for image segmentation , 2003, IS&T/SPIE Electronic Imaging.