Placing an Obnoxious Facility in Geometric Networks

In this paper we consider several different problems of placing an obnoxious facility on geometric networks. In particular, our main results show how to obtain efficient polynomial time algorithms for locating an obnoxious facility on the given network under various distance functions such as maximizing the total sum of distances or maximizing the smallest of the distances from the facility to the nodes of the network. Our algorithms are obtained by applying concepts and techniques from Computational Geometry such as range searching, constructing spanners and other optimization schemes.

[1]  Frank Plastria,et al.  Undesirable facility location with minimal covering objectives , 1999, Eur. J. Oper. Res..

[2]  G. O. Wesolowsky,et al.  OBNOXIOUS FACILITY LOCATION IN THE INTERIOR OF A PLANAR NETWORK , 1995 .

[3]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[4]  Joachim Gudmundsson,et al.  Approximating a Minimum Manhattan Network , 2001, Nord. J. Comput..

[5]  Nimrod Megiddo,et al.  New Results on the Complexity of p-Center Problems , 1983, SIAM J. Comput..

[6]  Pankaj K. Agarwal,et al.  Selection in Monotone Matrices and Computing kth Nearest Neighbors , 1994, SWAT.

[7]  Zvi Drezner,et al.  A note on the location of an obnoxious facility on a network , 2000, Eur. J. Oper. Res..

[8]  S. Rao Kosaraju,et al.  Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.

[9]  Erhan Erkut,et al.  A multiobjective model for locating undesirable facilities , 1993, Ann. Oper. Res..

[10]  Arie Tamir,et al.  Obnoxious Facility Location on Graphs , 1991, SIAM J. Discret. Math..

[11]  Erhan Erkut,et al.  Analytical models for locating undesirable facilities , 1989 .

[12]  Bernard Chazelle,et al.  A Functional Approach to Data Structures and Its Use in Multidimensional Searching , 1988, SIAM J. Comput..

[13]  Bernard Chazelle Filtering Search: A New Approach to Query-Answering , 1983, FOCS.

[14]  R. Garfinkel,et al.  Locating an Obnoxious Facility on a Network , 1978 .

[15]  George S. Lueker,et al.  Adding range restriction capability to dynamic data structures , 1985, JACM.

[16]  Micha Sharir,et al.  Computing the Smallest K-enclosing Circle and Related Problems , 1994, Comput. Geom..

[17]  Zvi Drezner,et al.  Minimum covering criterion for obnoxious facility location on a network , 1996, Networks.

[18]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[19]  Sergey Bereg,et al.  Optimal Facility Location Under Various Distance Functions , 2000, Int. J. Comput. Geom. Appl..

[20]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[21]  Arie Tamir,et al.  Improved Complexity Bounds for Center Location Problems on Networks by Using Dynamic Data Structures , 1988, SIAM J. Discret. Math..

[22]  Richard Cokt Slowing Down Sorting Networks to Obtain Faster Sorting Algorithms , 1984 .

[23]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[24]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[25]  Pravin M. Vaidya,et al.  A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..

[26]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry , 2012, EATCS Monographs on Theoretical Computer Science.

[27]  Jeffrey S. Salowe Constructing multidimensional spanner graphs , 1991, Int. J. Comput. Geom. Appl..