Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization

[1]  Jean-Luc Starck,et al.  State-of-the-Art Machine Learning MRI Reconstruction in 2020: Results of the Second fastMRI Challenge , 2020, ArXiv.

[2]  Mariya Doneva,et al.  SURE‐based automatic parameter selection for ESPIRiT calibration , 2020, Magnetic resonance in medicine.

[3]  Aaron Defazio,et al.  End-to-End Variational Networks for Accelerated MRI Reconstruction , 2020, MICCAI.

[4]  Peng Lai,et al.  Accelerating cardiac cine MRI using a deep learning‐based ESPIRiT reconstruction , 2019, Magnetic resonance in medicine.

[5]  C. L. Zitnick,et al.  GrappaNet: Combining Parallel Imaging With Deep Learning for Multi-Coil MRI Reconstruction , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Francesco Renna,et al.  On instabilities of deep learning in image reconstruction and the potential costs of AI , 2019, Proceedings of the National Academy of Sciences.

[7]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[8]  Jian Sun,et al.  A Prior Learning Network for Joint Image and Sensitivity Estimation in Parallel MR Imaging , 2019, MICCAI.

[9]  Mathews Jacob,et al.  MoDL: Model-Based Deep Learning Architecture for Inverse Problems , 2017, IEEE Transactions on Medical Imaging.

[10]  Pascal Vincent,et al.  fastMRI: An Open Dataset and Benchmarks for Accelerated MRI , 2018, ArXiv.

[11]  Jens Frahm,et al.  Simultaneous multi‐slice MRI using cartesian and radial FLASH and regularized nonlinear inversion: SMS‐NLINV , 2017, Magnetic resonance in medicine.

[12]  Daniel Rueckert,et al.  A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction , 2017, IEEE Transactions on Medical Imaging.

[13]  Thomas Pock,et al.  Learning a variational network for reconstruction of accelerated MRI data , 2017, Magnetic resonance in medicine.

[14]  Michael Elad,et al.  Calibrationless parallel imaging reconstruction based on structured low‐rank matrix completion , 2013, Magnetic resonance in medicine.

[15]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[16]  Justin P. Haldar,et al.  Low-Rank Modeling of Local $k$-Space Neighborhoods (LORAKS) for Constrained MRI , 2014, IEEE Transactions on Medical Imaging.

[17]  Nicole Seiberlich,et al.  Parallel MR imaging , 2012, Journal of magnetic resonance imaging : JMRI.

[18]  M. Lustig,et al.  SPIRiT: Iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space , 2010, Magnetic resonance in medicine.

[19]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[20]  Leslie Ying,et al.  Joint image reconstruction and sensitivity estimation in SENSE (JSENSE) , 2007, Magnetic resonance in medicine.

[21]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[22]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[23]  W. Manning,et al.  Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays , 1997, Magnetic resonance in medicine.

[24]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .