Geometry for robot path planning

There have been many interesting recent results in the area of geometrical methods for path planning in robotics. So it seems very timely to attempt a description of mathematical developments surrounding very elementary engineering tasks. Even with such limited scope, there is too much to cover in detail. Inevitably, our knowledge and personal preferences have a lot to do with what is emphasised, included, or left out. Part I is introductory, elementary in tone, and important for understanding the need for geometrical methods in path planning. Part II describes the results on geometrical constructions that imitate well-known constructions from classical approximation theory. Part III reviews a class of methods where classical criteria are extended to curves in Riemannian manifolds, including several recent mathematical results that have not yet found their way into the literature.

[1]  V. Jurdjevic NON-EUCLIDEAN ELASTICA , 1995 .

[2]  F. Park,et al.  Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .

[3]  K. Hüper,et al.  On the Geometry of Rolling and Interpolation Curves on Sn, SOn, and Grassmann Manifolds , 2007 .

[4]  Sung Yong Shin,et al.  A C/sup 2/-continuous B-spline quaternion curve interpolating a given sequence of solid orientations , 1995, Proceedings Computer Animation'95.

[5]  P. Crouch,et al.  On the geometry of Riemannian cubic polynomials , 2001 .

[6]  Lyle Noakes,et al.  Nonlinear corner‐cutting , 1998, Adv. Comput. Math..

[7]  Lyle Noakes,et al.  Duality and Riemannian cubics , 2006, Adv. Comput. Math..

[8]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[9]  P. Crouch,et al.  Splines of class Ck on non-euclidean spaces , 1995 .

[10]  Lyle Noakes,et al.  Accelerations of Riemannian quadratics , 1999 .

[11]  Lyle Noakes,et al.  Asymptotics of Null Lie Quadratics in E3 , 2008, SIAM J. Appl. Dyn. Syst..

[12]  P. Crouch,et al.  The De Casteljau Algorithm on Lie Groups and Spheres , 1999 .

[13]  Bahram Ravani,et al.  Geometric Construction of Bézier Motions , 1994 .

[14]  Adolf Karger,et al.  Space kinematics and Lie groups , 1985 .

[15]  Krzysztof Andrzej Krakowski,et al.  Envelopes of splines in the projective plane , 2005, IMA J. Math. Control. Inf..

[16]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[17]  L. Noakes LAX CONSTRAINTS IN SEMISIMPLE LIE GROUPS , 2006 .

[18]  Peter E. Crouch,et al.  Elastic Curves as Solutions of Riemannian and Sub-Riemannian Control Problems , 2000, Math. Control. Signals Syst..

[19]  Lyle Noakes,et al.  Quadratic Interpolation on Spheres , 2002, Adv. Comput. Math..

[20]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[21]  Daniel Pletinckx,et al.  Quaternion calculus as a basic tool in computer graphics , 2005, The Visual Computer.

[22]  Larry L. Schumaker,et al.  Curves and surfaces with applications in CAGD , 1997 .

[23]  Nira Dyn,et al.  Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..

[24]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[25]  C. Altafini The de casteljau algorithm on SE(3) , 2001 .

[26]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[27]  Vijay Kumar,et al.  Interpolation schemes for rigid body motions , 1998, Comput. Aided Des..

[28]  Rena Ding Drawing Ruled Surfaces Using the Dual De Boor Algorithm , 2002, Electron. Notes Theor. Comput. Sci..

[29]  Vijay Kumar,et al.  Two methods for interpolating rigid body motions , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[30]  L. Noakes,et al.  Geometric properties for incomplete data , 2006 .

[31]  Vijay Kumar,et al.  Planning of smooth motions on SE(3) , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[32]  G. Nielson Smooth Interpolation of Orientations , 1993 .

[33]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[34]  Vijay Kumar,et al.  On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..

[35]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[36]  Lyle Noakes,et al.  Non-null Lie quadratics in E3 , 2004 .

[37]  Lyle Noakes,et al.  Bézier curves and C2 interpolation in Riemannian manifolds , 2007, J. Approx. Theory.

[38]  M. Cox The Numerical Evaluation of B-Splines , 1972 .

[39]  K. Krakowski Geometrical Methods of Inference , 2002 .

[40]  Peter E. Crouch,et al.  Elastic curves on the sphere , 1994, Adv. Comput. Math..

[41]  Tomasz Popiel,et al.  On parametric smoothness of generalised B-spline curves , 2006, Comput. Aided Geom. Des..

[42]  Fabio Giannoni,et al.  Optimal Control on Riemannian Manifolds by Interpolation , 2004, Math. Control. Signals Syst..

[43]  Johannes Wallner Smoothness Analysis of Subdivision Schemes by Proximity , 2006 .

[44]  Samuel R. Buss,et al.  Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.

[45]  Lyle Noakes,et al.  Null Riemannian cubics in tension in SO(3) , 2005, IMA J. Math. Control. Inf..

[46]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[47]  S. Buss Accurate and efficient simulation of rigid-body rotations , 2000 .

[48]  H. Pottmann,et al.  Energy-minimizing splines in manifolds , 2004, SIGGRAPH 2004.

[49]  Lyle Noakes,et al.  C2 spherical Bézier splines , 2006, Comput. Aided Geom. Des..

[50]  Tomasz Popiel,et al.  Geometrically-defined curves in Riemannian manifolds , 2007 .

[51]  M. G. Wagner,et al.  Computer-Aided Design With Spatial Rational B-Spline Motions , 1996 .

[52]  Lyle Noakes,et al.  Elastica in SO(3) , 2007, Journal of the Australian Mathematical Society.

[53]  R. Giambò,et al.  An analytical theory for Riemannian cubic polynomials , 2002 .

[54]  L. Noakes Null cubics and Lie quadratics , 2003 .

[55]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  John F. Hughes,et al.  Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.

[57]  Vijay R. Kumar,et al.  Euclidean metrics for motion generation on SE(3) , 2002 .