Geometry for robot path planning
暂无分享,去创建一个
[1] V. Jurdjevic. NON-EUCLIDEAN ELASTICA , 1995 .
[2] F. Park,et al. Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .
[3] K. Hüper,et al. On the Geometry of Rolling and Interpolation Curves on Sn, SOn, and Grassmann Manifolds , 2007 .
[4] Sung Yong Shin,et al. A C/sup 2/-continuous B-spline quaternion curve interpolating a given sequence of solid orientations , 1995, Proceedings Computer Animation'95.
[5] P. Crouch,et al. On the geometry of Riemannian cubic polynomials , 2001 .
[6] Lyle Noakes,et al. Nonlinear corner‐cutting , 1998, Adv. Comput. Math..
[7] Lyle Noakes,et al. Duality and Riemannian cubics , 2006, Adv. Comput. Math..
[8] P. Crouch,et al. The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .
[9] P. Crouch,et al. Splines of class Ck on non-euclidean spaces , 1995 .
[10] Lyle Noakes,et al. Accelerations of Riemannian quadratics , 1999 .
[11] Lyle Noakes,et al. Asymptotics of Null Lie Quadratics in E3 , 2008, SIAM J. Appl. Dyn. Syst..
[12] P. Crouch,et al. The De Casteljau Algorithm on Lie Groups and Spheres , 1999 .
[13] Bahram Ravani,et al. Geometric Construction of Bézier Motions , 1994 .
[14] Adolf Karger,et al. Space kinematics and Lie groups , 1985 .
[15] Krzysztof Andrzej Krakowski,et al. Envelopes of splines in the projective plane , 2005, IMA J. Math. Control. Inf..
[16] Lyle Noakes,et al. Cubic Splines on Curved Spaces , 1989 .
[17] L. Noakes. LAX CONSTRAINTS IN SEMISIMPLE LIE GROUPS , 2006 .
[18] Peter E. Crouch,et al. Elastic Curves as Solutions of Riemannian and Sub-Riemannian Control Problems , 2000, Math. Control. Signals Syst..
[19] Lyle Noakes,et al. Quadratic Interpolation on Spheres , 2002, Adv. Comput. Math..
[20] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[21] Daniel Pletinckx,et al. Quaternion calculus as a basic tool in computer graphics , 2005, The Visual Computer.
[22] Larry L. Schumaker,et al. Curves and surfaces with applications in CAGD , 1997 .
[23] Nira Dyn,et al. Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..
[24] Bert Jüttler,et al. An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..
[25] C. Altafini. The de casteljau algorithm on SE(3) , 2001 .
[26] C. D. Boor,et al. On Calculating B-splines , 1972 .
[27] Vijay Kumar,et al. Interpolation schemes for rigid body motions , 1998, Comput. Aided Des..
[28] Rena Ding. Drawing Ruled Surfaces Using the Dual De Boor Algorithm , 2002, Electron. Notes Theor. Comput. Sci..
[29] Vijay Kumar,et al. Two methods for interpolating rigid body motions , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).
[30] L. Noakes,et al. Geometric properties for incomplete data , 2006 .
[31] Vijay Kumar,et al. Planning of smooth motions on SE(3) , 1996, Proceedings of IEEE International Conference on Robotics and Automation.
[32] G. Nielson. Smooth Interpolation of Orientations , 1993 .
[33] Frank Chongwoo Park,et al. Smooth invariant interpolation of rotations , 1997, TOGS.
[34] Vijay Kumar,et al. On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..
[35] Ken Shoemake,et al. Animating rotation with quaternion curves , 1985, SIGGRAPH.
[36] Lyle Noakes,et al. Non-null Lie quadratics in E3 , 2004 .
[37] Lyle Noakes,et al. Bézier curves and C2 interpolation in Riemannian manifolds , 2007, J. Approx. Theory.
[38] M. Cox. The Numerical Evaluation of B-Splines , 1972 .
[39] K. Krakowski. Geometrical Methods of Inference , 2002 .
[40] Peter E. Crouch,et al. Elastic curves on the sphere , 1994, Adv. Comput. Math..
[41] Tomasz Popiel,et al. On parametric smoothness of generalised B-spline curves , 2006, Comput. Aided Geom. Des..
[42] Fabio Giannoni,et al. Optimal Control on Riemannian Manifolds by Interpolation , 2004, Math. Control. Signals Syst..
[43] Johannes Wallner. Smoothness Analysis of Subdivision Schemes by Proximity , 2006 .
[44] Samuel R. Buss,et al. Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.
[45] Lyle Noakes,et al. Null Riemannian cubics in tension in SO(3) , 2005, IMA J. Math. Control. Inf..
[46] J. Jost. Riemannian geometry and geometric analysis , 1995 .
[47] S. Buss. Accurate and efficient simulation of rigid-body rotations , 2000 .
[48] H. Pottmann,et al. Energy-minimizing splines in manifolds , 2004, SIGGRAPH 2004.
[49] Lyle Noakes,et al. C2 spherical Bézier splines , 2006, Comput. Aided Geom. Des..
[50] Tomasz Popiel,et al. Geometrically-defined curves in Riemannian manifolds , 2007 .
[51] M. G. Wagner,et al. Computer-Aided Design With Spatial Rational B-Spline Motions , 1996 .
[52] Lyle Noakes,et al. Elastica in SO(3) , 2007, Journal of the Australian Mathematical Society.
[53] R. Giambò,et al. An analytical theory for Riemannian cubic polynomials , 2002 .
[54] L. Noakes. Null cubics and Lie quadratics , 2003 .
[55] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[56] John F. Hughes,et al. Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.
[57] Vijay R. Kumar,et al. Euclidean metrics for motion generation on SE(3) , 2002 .