Efficiency Crisis of Swift Gamma-Ray Bursts with Shallow X-ray Afterglows : Prior Activity or Time-Dependent Microphysics?

Context. Most X-ray afterglows of gamma-ray bursts (GRBs) observed by the Swift satellite have a shallow decay phase $\propto$$t^{-1/2}$ in the first few hours. Aims. This is not predicted by the standard afterglow model and needs an explanation. Methods. We discuss that the shallow decay requires an unreasonably high gamma-ray efficiency, $\ga$$75{-}90\%$, within current models, which is difficult to produce by internal shocks. Such a crisis may be avoided if a weak relativistic explosion occurs ~$10^3{-}10^6$ s prior to the main burst or if the microphysical parameter of the electron energy increases during the shallow decay, $\epsilon_{\rm e} \propto t^{1/2}$. The former explanation predicts a very long precursor, while both prefer dim optical flashes from the reverse shock, as was recently reported. We also calculate the multi-wavelength afterglows and compare them with observations. Results. No optical break at the end of the shallow X-ray decay indicates a preference for the time-dependent microphysics model with additionally decaying magnetic fields, $\epsilon_B \propto t^{-0.6}$.

[1]  P. Giommi,et al.  An unexpectedly rapid decline in the X-ray afterglow emission of long γ-ray bursts , 2005, Nature.

[2]  Re'em Sari,et al.  Lower Limits on Lorentz Factors in Gamma-Ray Bursts , 2000, astro-ph/0011508.

[3]  P. Giommi,et al.  GRB 050117: Simultaneous Gamma-Ray and X-Ray Observations with the Swift Satellite , 2005, astro-ph/0510008.

[4]  P. Giommi,et al.  Swift observations of the X-ray-bright GRB 050315 , 2005 .

[5]  D. Burrows,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[6]  Abraham Loeb,et al.  Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray Burst Sources , 1999, astro-ph/9904363.

[7]  Bing Zhang,et al.  On the Kinetic Energy and Radiative Efficiency of Gamma-Ray Bursts , 2004 .

[8]  Bing Zhang,et al.  Flares in Long and Short Gamma-Ray Bursts: A Common Origin in a Hyperaccreting Accretion Disk , 2005, astro-ph/0511506.

[9]  F. A. Harrison,et al.  A Study of the Afterglows of Four GRBs: Constraining the Explosion and Fireball Model , 2003, astro-ph/0307056.

[10]  T. Sakamoto,et al.  Discovery of an Afterglow Extension of the Prompt Phase of Two Gamma Ray Bursts Observed by Swift , 2005 .

[11]  Davide Lazzati,et al.  Thick Fireballs and the Steep Decay in the Early X-Ray Afterglow of Gamma-Ray Bursts , 2005, astro-ph/0511658.

[12]  Tsvi Piran,et al.  Gamma‐ray burst efficiency and possible physical processes shaping the early afterglow , 2006, astro-ph/0601054.

[13]  Sergio Campana,et al.  Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data , 2006 .

[14]  N. Gehrels,et al.  Bright X-ray Flares in Gamma-Ray Burst Afterglows , 2005, Science.

[15]  Tsvi Piran,et al.  Some Observational Consequences of Gamma-Ray Burst Shock Models , 1999, astro-ph/9906002.

[16]  N. Gehrels,et al.  Analysis of the X‐ray emission of nine Swift afterglows , 2006 .

[17]  P. Mészáros,et al.  Spectra of Unsteady Wind Models of Gamma-Ray Bursts , 1996, astro-ph/9609039.

[18]  K. Ioka,et al.  Tail emission of prompt gamma-ray burst jets , 2005, astro-ph/0509159.

[19]  M. Feroci,et al.  Probing the environment in gamma-ray bursts : The case of an X-ray precursor, afterglow late onset, and wind versus constant density profile in GRB 011121 and GRB 011211 , 2004 .

[20]  Ryo Yamazaki,et al.  Shallow Decay of Early X-Ray Afterglows from Inhomogeneous Gamma-Ray Burst Jets , 2006 .

[21]  Martin J. Rees,et al.  Fe Kα Emission from a Decaying Magnetar Model of Gamma-Ray Bursts , 2000 .

[22]  Bing Zhang,et al.  Variabilities of Gamma-Ray Burst Afterglows: Long-acting Engine, Anisotropic Jet, or Many Fluctuating Regions? , 2004 .

[23]  Re'em Sari,et al.  Hydrodynamics of Gamma-Ray Burst Afterglow , 1997 .

[24]  A Gamma-Ray Burst Model with Small Baryon Contamination , 1998, astro-ph/9808355.

[25]  Sari,et al.  Impulsive and Varying Injection in Gamma-Ray Burst Afterglows. , 2000, The Astrophysical journal.

[26]  Jonathan Granot,et al.  The Case for Anisotropic Afterglow Efficiency within Gamma-Ray Burst Jets , 2005, astro-ph/0509857.

[27]  M. V. Medvedev,et al.  Interpenetrating Plasma Shells: Near-Equipartition Magnetic Field Generation and Nonthermal Particle Acceleration , 2003, astro-ph/0307500.

[28]  Martin J. Rees,et al.  Refreshed Shocks and Afterglow Longevity in Gamma-Ray Bursts , 1998 .

[29]  E. Waxman,et al.  THE EFFICIENCY OF ELECTRON ACCELERATION IN COLLISIONLESS SHOCKS AND GAMMA-RAY BURST ENERGETICS , 2005, astro-ph/0502070.

[30]  R. Blandford,et al.  Fluid dynamics of relativistic blast waves , 1976 .

[31]  Paul T. O'Brien,et al.  Gamma-Ray Bursts: Restarting the Engine , 2005 .

[32]  Andrei M. Beloborodov On the Efficiency of Internal Shocks in Gamma-Ray Bursts , 2000 .

[33]  Re'em Sari,et al.  Ultraefficient Internal Shocks , 2000, astro-ph/0101006.

[34]  Bing Zhang,et al.  Gamma-Ray Bursts with Continuous Energy Injection and Their Afterglow Signature , 2001, astro-ph/0108402.

[35]  P. Giommi,et al.  Swift XRT observations of the afterglow of GRB 050319 , 2005 .

[36]  Saturation mechanism of the weibel instability in weakly magnetized plasmas , 2005, physics/0501110.

[37]  Y. Z. Fan,et al.  Late internal‐shock model for bright X‐ray flares in gamma‐ray burst afterglows and GRB 011121 , 2005 .

[38]  D. Lazzati Precursor activity in bright, long BATSE gamma-ray bursts , 2004, astro-ph/0411753.

[39]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[40]  Jonathan Granot,et al.  Distribution of gamma-ray burst ejecta energy with Lorentz factor , 2006 .