Decompositions into isomorphic rainbow spanning trees

A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. Our main result implies that, given any optimal colouring of a sufficiently large complete graph $K_{2n}$, there exists a decomposition of $K_{2n}$ into isomorphic rainbow spanning trees. This settles conjectures of Brualdi--Hollingsworth (from 1996) and Constantine (from 2002) for large graphs.

[1]  Béla Bollobás,et al.  Random Graphs , 1985 .

[2]  James M. Carraher,et al.  Edge-disjoint rainbow spanning trees in complete graphs , 2016, Eur. J. Comb..

[3]  Joel H. Spencer,et al.  Asymptotic behavior of the chromatic index for hypergraphs , 1989, J. Comb. Theory, Ser. A.

[4]  Henry Meyniel,et al.  On a problem of G. Hahn about coloured hamiltonian paths in K2t , 1984, Discret. Math..

[5]  Benny Sudakov,et al.  Halfway to Rota’s Basis Conjecture , 2018 .

[6]  Saieed Akbari,et al.  Multicolored Parallelisms of Isomorphic Spanning Trees , 2006, SIAM J. Discret. Math..

[7]  Peter Keevash,et al.  On the number of symbols that forces a transversal , 2020, Comb. Probab. Comput..

[8]  Guillem Perarnau,et al.  Rainbow matchings in Dirac bipartite graphs , 2017, Random Struct. Algorithms.

[9]  Covering with Latin Transversals , 1995, Discret. Appl. Math..

[10]  Gregory M. Constantine Edge-Disjoint Isomorphic Multicolored Trees and Cycles in Complete Graphs , 2004, SIAM J. Discret. Math..

[11]  Rajeev Raman,et al.  The Power of Collision: Randomized Parallel Algorithms for Chaining and Integer Sorting , 1990, FSTTCS.

[12]  Andrey Kupavskii,et al.  Rainbow structures in locally bounded colorings of graphs , 2018 .

[13]  Benny Sudakov,et al.  Decompositions into spanning rainbow structures , 2019, Proceedings of the London Mathematical Society.

[14]  Saieed Akbari,et al.  Multicolored trees in complete graphs , 2007, J. Graph Theory.

[15]  Richard A. Brualdi,et al.  Multicolored Trees in Complete Graphs , 1996, J. Comb. Theory, Ser. B.

[16]  Helen Verrall,et al.  Spanning Trees Orthogonal to One-Factorizations of K2n , 2000, Ars Comb..

[17]  Uzi Vishkin,et al.  Almost Fully-parallel Parentheses Matching , 1995, Discret. Appl. Math..

[18]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[19]  Noga Alon,et al.  On a Hypergraph Matching Problem , 2005, Graphs Comb..

[20]  Benny Sudakov,et al.  Linearly many rainbow trees in properly edge-coloured complete graphs , 2017, J. Comb. Theory, Ser. B.

[21]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[22]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[23]  Richard Montgomery,et al.  Spanning trees in random graphs , 2018, Advances in Mathematics.

[24]  Hong Liu,et al.  Rainbow spanning trees in properly coloured complete graphs , 2017, Discret. Appl. Math..

[25]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[26]  Hung-Lin Fu,et al.  Multicolored Isomorphic Spanning Trees in Complete Graphs , 2014, Ars Comb..

[27]  Paul Horn,et al.  Rainbow spanning trees in complete graphs colored by one‐factorizations , 2018, J. Graph Theory.