This paper describes an advanced scanning long wavelength IR focal plane array fabricated in HgCdTe. Comprised of an array of front-side illuminated, planar n-on-p homojunction diodes mated to a Si CMOS readout integration circuit, the array has a measured average spectral cutoff wavelength of 10.8 micrometers at 65 K with an average quantum efficiency of 87%. The FPA's peak D* at temperatures of 65 and 78 K, in the absence of background radiation, exceeds 9.3 X 1011 and 2.6 X 1011 cm(root)Hz/W, respectively. No appreciable 1/f noise is evident even for reverse bias voltages as large as 50 mV. Both the spectral and the spatial responses of the diode are well-behaved; and the measured noise contribution due to background radiation agrees with theory.