Inverse design of metasurface optical filters using deep neural network with high degrees of freedom

[1]  Bowen Zheng,et al.  A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design , 2019, ACS Photonics.

[2]  Jason Hickey,et al.  Data-driven metasurface discovery , 2018, ACS nano.

[3]  Jianji Yang,et al.  High-efficiency, large-area, topology-optimized metasurfaces , 2019, Light: Science & Applications.

[4]  Mathias Wilhelm,et al.  Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning , 2019, Nature Methods.

[5]  Jonathan A. Fan,et al.  Global optimization of dielectric metasurfaces using a physics-driven neural network , 2019, Nano letters.

[6]  Zongfu Yu,et al.  Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures , 2017, 2019 Conference on Lasers and Electro-Optics (CLEO).

[7]  Toshiaki Koike-Akino,et al.  Deep Neural Network Inverse Design of Integrated Nanophotonic Devices. , 2018, 1809.03555.

[8]  Michael Mrejen,et al.  Plasmonic nanostructure design and characterization via Deep Learning , 2018, Light: Science & Applications.

[9]  T. Asano,et al.  Optimization of photonic crystal nanocavities based on deep learning. , 2018, Optics express.

[10]  Yongmin Liu,et al.  Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. , 2018, ACS nano.

[11]  Kyu-Tae Lee,et al.  A Generative Model for Inverse Design of Metamaterials , 2018, Nano letters.

[12]  Mike Preuss,et al.  Planning chemical syntheses with deep neural networks and symbolic AI , 2017, Nature.

[13]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[14]  Li Jing,et al.  Nanophotonic particle simulation and inverse design using artificial neural networks , 2017, Science Advances.

[15]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.

[16]  Chunjie Luo,et al.  pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning. , 2017, Analytical chemistry.

[17]  Federico Capasso,et al.  Arbitrary spin-to–orbital angular momentum conversion of light , 2017, Science.

[18]  Kebin Fan,et al.  Experimental realization of a terahertz all-dielectric metasurface absorber. , 2017, Optics express.

[19]  Alexander Y. Piggott,et al.  Fabrication-constrained nanophotonic inverse design , 2016, Scientific Reports.

[20]  C. Argyropoulos,et al.  Broadband polarizers based on graphene metasurfaces. , 2016, Optics letters.

[21]  Nicolas Bonod,et al.  All-Dielectric Colored Metasurfaces with Silicon Mie Resonators. , 2016, ACS nano.

[22]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[23]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[24]  Ata Mahjoubfar,et al.  Deep Learning in Label-free Cell Classification , 2016, Scientific Reports.

[25]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[27]  Abul K. Azad,et al.  Metasurface Broadband Solar Absorber , 2015, Scientific Reports.

[28]  Xiaodong Yang,et al.  Structural color printing based on plasmonic metasurfaces of perfect light absorption , 2015, Scientific Reports.

[29]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[30]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[31]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[33]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[34]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[35]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[36]  Shengtai Li,et al.  Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution , 2002, SIAM J. Sci. Comput..

[37]  Thomas K. Gaylord,et al.  Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach , 1995 .

[38]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .