Good reduction of puiseux series and complexity of the Newton-Puiseux algorithm over finite fields
暂无分享,去创建一个
[1] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[2] William Fulton,et al. Hurwitz Schemes and Irreducibility of Moduli of Algebraic Curves , 1969 .
[3] Adrien Poteaux,et al. Computing monodromy groups defined by plane algebraic curves , 2007, SNC '07.
[4] Victor Shoup,et al. A computational introduction to number theory and algebra , 2005 .
[5] Adrien Poteaux,et al. Towards a Symbolic-Numeric Method to Compute Puiseux Series: The Modular Part , 2008, ArXiv.
[6] Victor Shoup. A Computational Introduction to Number Theory and Algebra: Finite fields , 2005 .
[7] Bernard Deconinck,et al. Computing the Abel map , 2008 .
[8] H. T. Kung,et al. All Algebraic Functions Can Be Computed Fast , 1978, JACM.
[9] D. Duval. Rational Puiseux expansions , 1989 .
[10] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[11] Bernard Deconinck,et al. Computing Riemann matrices of algebraic curves , 2001 .
[12] Bernard Dwork,et al. On natural radii of $p$-adic convergence , 1979 .
[13] C. Chevalley,et al. Introduction to the theory of algebraic functions of one variable , 1951 .
[14] Barry M. Trager,et al. Integration of algebraic functions , 1984 .
[15] J. W. Bruce,et al. LE PROBLÈME DES MODULES POUR LES BRANCHES PLANES , 1988 .
[16] Mark van Hoeij,et al. An Algorithm for Computing an Integral Basis in an Algebraic Function Field , 1994, J. Symb. Comput..
[17] P. G. Walsh,et al. A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function , 2000, Math. Comput..
[18] Martin Eichler,et al. Introduction to the Theory of Algebraic Numbers and Functions , 1966 .