An upper bound on the ergodic mutual information in Rician fading MIMO channels

We consider Rician fading multiple-input multiple-output (MIMO) channels where the transmitted signal has complex Gaussian distribution, iid across the transmit antennas. Based on expected values of elementary symmetric functions of complex noncentral Wishart matrices, we derive an upper bound on the average (ergodic) mutual information for arbitrary SNR, arbitrary rank of the deterministic line-of-sight matrix, and arbitrary number of transmit/receive antennas. The Rayleigh fading signal component is allowed to have spatial correlation at one end of the link. Upper bounds for the cases of rank-1 line-of-sight component and pure Rayleigh fading emerge as special instances of the general result

[1]  C. Herz BESSEL FUNCTIONS OF MATRIX ARGUMENT , 1955 .

[2]  Mohamed-Slim Alouini,et al.  Capacity of MIMO Rician channels , 2006, IEEE Transactions on Wireless Communications.

[3]  Matthew R. McKay,et al.  Improved general lower bound for spatially-correlated Rician MIMO capacity , 2006, IEEE Communications Letters.

[4]  S. Venkatesan,et al.  Capacity of a Gaussian MIMO channel with nonzero mean , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[5]  Angel E. Lozano,et al.  Link-optimal space-time processing with multiple transmit and receive antennas , 2001, IEEE Communications Letters.

[6]  Lee M. Garth,et al.  Exact capacity distributions for MIMO systems with small numbers of antennas , 2003, IEEE Communications Letters.

[7]  Moe Z. Win,et al.  On the capacity of spatially correlated MIMO Rayleigh-fading channels , 2003, IEEE Trans. Inf. Theory.

[8]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[9]  A. M. Mathai Jacobians of matrix transformations and functions of matrix argument , 1997 .

[10]  Helmut Bölcskei,et al.  Characterizing the statistical properties of mutual information in MIMO channels: insights into diversity-multiplexing tradeoff , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[11]  Fuzhen Zhang Matrix Theory: Basic Results and Techniques , 1999 .

[12]  Lee M. Garth,et al.  Exact capacity distribution for dual MIMO systems in Ricean fading , 2004, IEEE Communications Letters.

[13]  P. Krishnaiah,et al.  Some recent developments on complex multivariate distributions , 1976 .

[14]  Daniel Hosli,et al.  The Capacity of a MIMO Ricean Channel Is Monotonic in the Singular Values of the Mean , 2004 .

[15]  C. Khatri,et al.  Proof of Conjectures About the Expected Values of the Elementary Symmetric Functions of a Noncentral Wishart Matrix , 1974 .

[16]  Alex J. Grant,et al.  Rayleigh Fading Multi-Antenna Channels , 2002, EURASIP J. Adv. Signal Process..

[17]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[18]  Helmut Bölcskei,et al.  A geometrical investigation of the rank-1 Ricean MIMO channel at high SNR , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[19]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[20]  M. Alvo,et al.  Complex random matrices and Rayleigh channel capacity , 2003, Commun. Inf. Syst..

[21]  Hyundong Shin,et al.  Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole , 2003, IEEE Trans. Inf. Theory.

[22]  Mohammad Ali Khalighi,et al.  On capacity of Rician MIMO channels , 2001, 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598).

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  Valentine A. Aalo,et al.  Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment , 1995, IEEE Trans. Commun..

[25]  Mansoor Shafi,et al.  Capacity of MIMO systems with semicorrelated flat fading , 2003, IEEE Trans. Inf. Theory.

[26]  A. Lapidoth,et al.  On the log determinant of noncentral Wishart matrices , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[27]  A. Constantine Some Non-Central Distribution Problems in Multivariate Analysis , 1963 .

[28]  Joachim Speidel,et al.  Mutual information of MIMO channels in correlated Rayleigh fading environments - a general solution , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[29]  Amos Lapidoth,et al.  How good is an isotropic gaussian input on a MIMO Ricean channel? , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[30]  Michael Faulkner,et al.  MIMO Ricean channel capacity , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[31]  Peter F. Driessen,et al.  On the capacity formula for multiple input-multiple output wireless channels: a geometric interpretation , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).