Nonlinear Goal-Oriented Bayesian Inference: Application to Carbon Capture and Storage

In many engineering problems, unknown parameters of a model are inferred in order to make predictions, to design controllers, or to optimize the model. When parameters are distributed (continuous) or very high-dimensional (discrete) and quantities of interest are low-dimensional, parameters need not be fully resolved to make accurate estimates of quantities of interest. In this work, we extend goal-oriented inference---the process of estimating predictions from observed data without resolving the parameter, previously justified theoretically in the linear setting---to Bayesian statistical inference problem formulations with nonlinear experimental and prediction processes. We propose to learn the joint density of data and predictions offline using Gaussian mixture models. When data are observed online, we condition the representation to arrive at a probabilistic description of predictions given observed data. Our approach enables real-time estimation of uncertainty in quantities of interest and renders tra...

[1]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[2]  J. Berger The case for objective Bayesian analysis , 2006 .

[3]  Karen Willcox,et al.  Goal-Oriented Inference: Approach, Linear Theory, and Application to Advection Diffusion , 2012, SIAM J. Sci. Comput..

[4]  G. Casella,et al.  Objective Bayesian Variable Selection , 2006 .

[5]  Shu-lin Chen,et al.  Evaluation of a soil greenhouse gas emission model based on Bayesian inference and MCMC: Parameter identifiability and equifinality , 2013 .

[6]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[7]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[8]  Jan M. Nordbotten,et al.  Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation , 2011 .

[9]  Stein Krogstad,et al.  Open-source MATLAB implementation of consistent discretisations on complex grids , 2012, Computational Geosciences.

[10]  Youssef M. Marzouk,et al.  Bayesian inference with optimal maps , 2011, J. Comput. Phys..

[11]  Halvor Møll Nilsen,et al.  Numerical Aspects of Using Vertical Equilibrium Models for Simulating CO2 Sequestration , 2010 .

[12]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[13]  A. Gelman Objections to Bayesian statistics , 2008 .

[14]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[15]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[16]  Ponani S. Gopalakrishnan,et al.  Clustering via the Bayesian information criterion with applications in speech recognition , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[17]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[18]  Alessandro Fasso,et al.  Bayesian source detection and parameter estimation of a plume model based on sensor network measurements: Discussion , 2010 .

[19]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Clark S. Penrod,et al.  The strong uniform convergence of multivariate variable kernel estimates , 1986 .

[21]  Jiří Zelinka,et al.  Kernel Density Estimation Toolbox for Matlab , 2011 .

[22]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[23]  Chad Eric Lieberman,et al.  Goal-oriented inference : theoretical foundations and application to carbon capture and storage , 2013 .

[24]  Michel Loève,et al.  Probability Theory I , 1977 .

[25]  C. R. Smith,et al.  Maximum-Entropy and Bayesian Methods in Inverse Problems , 1985 .

[26]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[27]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[28]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .