The Juno Mission

Juno is a PI-led mission to Jupiter, the second mission in NASA’s New Frontiers Program. The 3625-kg spacecraft spins at 2 rpm and is powered by three 9-meter-long solar arrays that provide ∼500 watts in orbit about Jupiter. Juno carries eight science instruments that perform nine science investigations (radio science utilizes the communications antenna). Juno’s science objectives target Jupiter’s origin, interior, and atmosphere, and include an investigation of Jupiter’s polar magnetosphere and luminous aurora.

[1]  Phase separation in giant planets: inhomogeneous evolution of Saturn , 2003, astro-ph/0305031.

[2]  G. Schubert,et al.  Thermal structure of Jupiter's atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt , 1998 .

[3]  T. Encrenaz,et al.  Oxygen and Other Volatiles in the Giant Planets and their Satellites , 2008 .

[4]  D. Stevenson Planetary Magnetic Fields: Achievements and Prospects , 2010 .

[5]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[6]  R. Nybakken The Juno mission to Jupiter launch campaign and early cruise report , 2012, 2012 IEEE Aerospace Conference.

[7]  T. Encrenaz,et al.  A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. , 1999, Planetary and space science.

[8]  Gilles Chabrier,et al.  A new vision of giant planet interiors: Impact of double diffusive convection , 2012, 1201.4483.

[9]  J. Connerney,et al.  Modeling the Jovian current sheet and inner magnetosphere , 1981 .

[10]  P. Richet,et al.  A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules , 1977 .

[11]  Alan P. Boss,et al.  Evolution of the Solar Nebula. IV. Giant Gaseous Protoplanet Formation , 1998 .

[12]  F. Busse A simple model of convection in the Jovian atmosphere , 1976 .

[13]  B. Militzer,et al.  A Massive Core in Jupiter Predicted from First-Principles Simulations , 2008, 0807.4264.

[14]  Burkhard Militzer,et al.  Rocky core solubility in Jupiter and giant exoplanets. , 2011, Physical review letters.

[15]  V. Eshleman,et al.  The Atmosphere of Jupiter: An Analysis of Voyager Radio Occultation Measurements. , 1981 .

[16]  Comparative evolution of Jupiter and Saturn , 1998, astro-ph/9812192.

[17]  J. Fortney,et al.  Effects of helium phase separation on the evolution of extrasolar giant planets , 2003, astro-ph/0402620.

[18]  W. Hubbard Thermal structure of Jupiter , 1968 .

[19]  H. Mizuno,et al.  Formation of the Giant Planets , 1980 .

[20]  W. Hubbard Gravitational Signature of Jupiter's Deep Zonal Flows , 1998 .

[21]  Denis Grodent,et al.  Jupiter's main auroral oval observed with HST-STIS , 2003 .

[22]  T. Quinn,et al.  Formation of Giant Planets by Fragmentation of Protoplanetary Disks , 2002, Science.

[23]  T. Guillot A COMPARISON OF THE INTERIORS OF JUPITER AND SATURN , 1999, astro-ph/9907402.

[24]  Rick Nybakken The Juno mission to Jupiter — A pre-launch update , 2011, 2011 Aerospace Conference.

[25]  Jack J. Lissauer,et al.  Giant Planet Formation , 2010, 1006.5486.

[26]  D. J. Sheldon,et al.  Programmatic Impact of SDRAM SEFI , 2012, 2012 IEEE Radiation Effects Data Workshop.

[27]  A. Ingersoll,et al.  Motion in the interiors and atmospheres of Jupiter and Saturn: scale analysis, anelastic equations, barotropic stability criterion , 1982 .

[28]  D. Hunten,et al.  The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. , 1998, Journal of geophysical research.

[29]  Imke de Pater,et al.  A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.

[30]  L. Scheick,et al.  Juno radiation design and implementation , 2012, 2012 IEEE Aerospace Conference.

[31]  John E. Chambers,et al.  Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions , 1998 .

[32]  Nikku Madhusudhan,et al.  NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE , 2012, 1204.3887.

[33]  Evolutionary time scales for circumstellar disks associated with intermediate- and solar-type stars , 1993 .

[34]  J. Connerney,et al.  New models of Jupiter's magnetic field constrained by the Io flux tube footprint , 1998 .

[35]  J. Gérard,et al.  Auroral evidence of Io's control over the magnetosphere of Jupiter , 2012 .

[36]  A. Becker,et al.  AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT , 2012, The Astrophysical Journal Supplement Series.

[37]  W. Hubbard The Jovian surface condition and cooling rate , 1977 .

[38]  B. Militzer,et al.  SOLUBILITY OF WATER ICE IN METALLIC HYDROGEN: CONSEQUENCES FOR CORE EROSION IN GAS GIANT PLANETS , 2012 .

[39]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[40]  Angioletta Coradini,et al.  JIRAM, the image spectrometer in the near infrared on board the Juno mission to Jupiter. , 2008, Astrobiology.

[41]  Galileo Imaging Team,et al.  Observation of moist convection in Jupiter's atmosphere , 2000, Nature.

[42]  P. Gierasch Stability of jets on Jupiter and Saturn , 2004 .

[43]  Tristan Guillot THE INTERIORS OF GIANT PLANETS: Models and Outstanding Questions , 2001 .

[44]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[45]  T. Guillot,et al.  New Constraints on the Composition of Jupiter from Galileo Measurements and Interior Models , 1997, astro-ph/9707210.

[46]  J. Lunine,et al.  Enrichments in Volatiles in Jupiter: A New Interpretation of the Galileo Measurements , 2001 .

[47]  T. Guillot,et al.  SELF-CONSISTENT MODEL ATMOSPHERES AND THE COOLING OF THE SOLAR SYSTEM'S GIANT PLANETS , 2011, 1101.0606.

[48]  A. Boss Formation of gas and ice giant planets , 2002 .

[49]  D. Gautier,et al.  Saturn Helium Abundance: A Reanalysis of Voyager Measurements , 2000 .

[50]  A Theory of Extrasolar Giant Planets , 1995, astro-ph/9510046.

[51]  T. Encrenaz,et al.  Element Abundances and Isotope Ratios in the Giant Planets and Titan , 2003 .

[52]  Jeff Lewis Juno spacecraft operations lessons learned for early cruise mission phases , 2014, 2014 IEEE Aerospace Conference.

[53]  T. Dowling,et al.  Nonlinear simulations of Jupiter's 5-micron hot spots. , 2000, Science.

[54]  Ravit Helled,et al.  Planetesimal capture in the disk instability model , 2006 .

[55]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[56]  Daniel Gautier,et al.  Enrichment in volatiles in the giant planets of the Solar System , 2004 .

[57]  D. Stevenson Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures , 1975 .

[58]  D. Gautier,et al.  A Two-dimensional Model for the Primordial Nebula Constrained by D/H Measurements in the Solar System: Implications for the Formation of Giant Planets , 2001 .

[59]  R. Redmer,et al.  Ab Initio Equation of State Data for Hydrogen, Helium, and Water and the Internal Structure of Jupiter , 2007, 0712.1019.

[60]  E. Salpeter,et al.  The dynamics and helium distribution in hydrogen-helium fluid planets , 1977 .

[61]  Katharina Lodders,et al.  Jupiter Formed with More Tar than Ice , 2004 .

[62]  R. Grammier,et al.  A look inside the Juno Mission to Jupiter , 2009, 2009 IEEE Aerospace conference.

[63]  F. Low Observations of Venus, Jupiter, and Saturn at λ20 μ. , 1966 .

[64]  T. Guillot,et al.  The Interior of Jupiter , 2004 .

[65]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[66]  Willy Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004 .

[67]  Christopher T. Russell,et al.  Probabilistic models of the Jovian magnetopause and bow shock locations , 2002 .

[68]  D. Hunten,et al.  Moist convection and the abundance of water in the troposphere of Jupiter , 1987 .

[69]  D. Hunten,et al.  Helium in Jupiter's atmosphere: Results from the Galileo probe Helium Interferometer Experiment , 1998 .

[70]  D. Mccomas,et al.  A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter , 2014, Front. Astron. Space Sci..