The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site.

[1]  Harel Weinstein,et al.  An Intracellular Interaction Network Regulates Conformational Transitions in the Dopamine Transporter* , 2008, Journal of Biological Chemistry.

[2]  Jonathan A. Javitch,et al.  Mechanism of chloride interaction with neurotransmitter:sodium symporters , 2007, Nature.

[3]  Da-Neng Wang,et al.  LeuT-Desipramine Structure Reveals How Antidepressants Block Neurotransmitter Reuptake , 2007, Science.

[4]  Eric Gouaux,et al.  Antidepressant binding site in a bacterial homologue of neurotransmitter transporters , 2007, Nature.

[5]  Barry Honig,et al.  Identification of a chloride ion binding site in Na+/Cl−-dependent transporters , 2007, Proceedings of the National Academy of Sciences.

[6]  Klaus Schulten,et al.  Sugar transport across lactose permease probed by steered molecular dynamics. , 2007, Biophysical journal.

[7]  M. Karplus,et al.  The signaling pathway of rhodopsin. , 2007, Structure.

[8]  J. Mindell,et al.  The uncoupled chloride conductance of a bacterial glutamate transporter homolog , 2007, Nature Structural &Molecular Biology.

[9]  J. Javitch,et al.  Monitoring the function of membrane transport proteins in detergent-solubilized form , 2007, Proceedings of the National Academy of Sciences.

[10]  Harel Weinstein,et al.  A Comprehensive Structure-Based Alignment of Prokaryotic and Eukaryotic Neurotransmitter/Na+ Symporters (NSS) Aids in the Use of the LeuT Structure to Probe NSS Structure and Function , 2006, Molecular Pharmacology.

[11]  B. Roux,et al.  Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. , 2006, Biophysical journal.

[12]  Harel Weinstein,et al.  State-dependent Conformations of the Translocation Pathway in the Tyrosine Transporter Tyt1, a Novel Neurotransmitter:Sodium Symporter from Fusobacterium nucleatum* , 2006, Journal of Biological Chemistry.

[13]  L. Iversen,et al.  Neurotransmitter transporters and their impact on the development of psychopharmacology , 2006, British journal of pharmacology.

[14]  E. Bossi,et al.  Role of the conserved glutamine 291 in the rat γ-aminobutyric acid transporter rGAT-1 , 2005, Cellular and Molecular Life Sciences.

[15]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[16]  Stephan O. Krause,et al.  Identification and Selective Inhibition of the Channel Mode of the Neuronal GABA Transporter 1 , 2005, Molecular Pharmacology.

[17]  H. Weinstein,et al.  A pincer-like configuration of TM2 in the human dopamine transporter is responsible for indirect effects on cocaine binding , 2005, Neuropharmacology.

[18]  Eric Gouaux,et al.  Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters , 2005, Nature.

[19]  Yuan-Wei Zhang,et al.  Cysteine-scanning Mutagenesis of Serotonin Transporter Intracellular Loop 2 Suggests an α-Helical Conformation* , 2005, Journal of Biological Chemistry.

[20]  J. Javitch,et al.  How did the neurotransmitter cross the bilayer? A closer view , 2005, Current Opinion in Neurobiology.

[21]  M. Karplus,et al.  Molecular dynamics and protein function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Schulten,et al.  Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. , 2004, Biophysical journal.

[23]  G. Rudnick,et al.  Cysteine-scanning mutagenesis of the fifth external loop of serotonin transporter. , 2004, Biochemistry.

[24]  Jonathan A Javitch,et al.  Identification of Intracellular Residues in the Dopamine Transporter Critical for Regulation of Transporter Conformation and Cocaine Binding* , 2004, Journal of Biological Chemistry.

[25]  Pengyu Y. Ren,et al.  Ion solvation thermodynamics from simulation with a polarizable force field. , 2003, Journal of the American Chemical Society.

[26]  Orkun S. Soyer,et al.  Probing conformational changes in neurotransmitter transporters: a structural context. , 2003, European journal of pharmacology.

[27]  Randy D Blakely,et al.  Serotonin and Cocaine-sensitive Inactivation of Human Serotonin Transporters by Methanethiosulfonates Targeted to Transmembrane Domain I* , 2003, Journal of Biological Chemistry.

[28]  J. Javitch,et al.  Characterization of a Functional Bacterial Homologue of Sodium-dependent Neurotransmitter Transporters* , 2003, The Journal of Biological Chemistry.

[29]  R. Gainetdinov,et al.  Plasma membrane monoamine transporters: structure, regulation and function , 2003, Nature Reviews Neuroscience.

[30]  G. Rudnick Mechanisms of Biogenic Amine Neurotransmitter Transporters , 2002 .

[31]  M. Reith,et al.  The role of conserved tryptophan and acidic residues in the human dopamine transporter as characterized by site‐directed mutagenesis , 2001, Journal of neurochemistry.

[32]  K. Schulten,et al.  Steered molecular dynamics and mechanical functions of proteins. , 2001, Current opinion in structural biology.

[33]  G. Rudnick,et al.  Permeation and gating residues in serotonin transporter. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  B. Kanner,et al.  The Reactivity of the γ-Aminobutyric Acid Transporter GAT-1 toward Sulfhydryl Reagents Is Conformationally Sensitive , 1999, The Journal of Biological Chemistry.

[35]  Critical Amino Acid Residues in Transmembrane Span 7 of the Serotonin Transporter Identified by Random Mutagenesis* , 1998, The Journal of Biological Chemistry.

[36]  S. Amara,et al.  Neurotransmitter transporters as molecular targets for addictive drugs. , 1998, Drug and alcohol dependence.

[37]  A. Karlin,et al.  Substituted-cysteine accessibility method. , 1998, Methods in enzymology.

[38]  B. Kanner,et al.  The Membrane Topology of GAT-1, a (Na+ + Cl−)-coupled γ-Aminobutyric Acid Transporter from Rat Brain* , 1997, The Journal of Biological Chemistry.

[39]  J. Walker,et al.  Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. , 1996, Journal of molecular biology.

[40]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[41]  G. Rudnick,et al.  Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. , 1994, The Journal of biological chemistry.

[42]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[43]  A. Cesura,et al.  Uptake, Release, and Subcellular Localization of l‐Methyl‐4‐Phenylpyridinium in Blood Platelets , 1987, Journal of neurochemistry.

[44]  S. Snyder,et al.  [3H]mazindol binding associated with neuronal dopamine and norepinephrine uptake sites. , 1984, Molecular pharmacology.

[45]  G. Peterson,et al.  A simplification of the protein assay method of Lowry et al. which is more generally applicable. , 1977, Analytical biochemistry.

[46]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[47]  W. Schaffner,et al.  A rapid, sensitive, and specific method for the determination of protein in dilute solution. , 1973, Analytical biochemistry.

[48]  O. Jardetzky,et al.  Simple Allosteric Model for Membrane Pumps , 1966, Nature.