Probing quantum gravity effects with quantum mechanical oscillators

[1]  M. Plenio,et al.  On quantum gravity tests with composite particles , 2019, Nature Communications.

[2]  G. Prodi,et al.  Quantum Signature of a Squeezed Mechanical Oscillator. , 2019, Physical review letters.

[3]  S. Danilishin,et al.  Testing the generalized uncertainty principle with macroscopic mechanical oscillators and pendulums , 2019, Physical Review D.

[4]  S. Marsat,et al.  Quantum gravity and gravitational-wave astronomy , 2019, Journal of Cosmology and Astroparticle Physics.

[5]  S. Danilishin,et al.  Testing of Quantum Gravity With Sub-Kilogram Acoustic Resonators , 2019, 1903.03346.

[6]  G. Prodi,et al.  Calibrated quantum thermometry in cavity optomechanics , 2018, Quantum Science and Technology.

[7]  G. Prodi,et al.  Silicon Nitride MOMS Oscillator for Room Temperature Quantum Optomechanics , 2018, Journal of Microelectromechanical Systems.

[8]  M. Plenio,et al.  Quantum-optical tests of Planck-scale physics , 2017, Physical Review A.

[9]  J. Lang,et al.  Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing. , 2017, Physical review letters.

[10]  André Großardt,et al.  Gravitational decoherence , 2017, 1706.05677.

[11]  Michael R. Vanner,et al.  Amplified transduction of Planck-scale effects using quantum optics , 2016, 1610.06796.

[12]  G. Prodi,et al.  Control of Recoil Losses in Nanomechanical SiN Membrane Resonators , 2016, 1607.04485.

[13]  A. Clerk,et al.  Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit. , 2016, Physical review letters.

[14]  Joshua A. Slater,et al.  Non-classical correlations between single photons and phonons from a mechanical oscillator , 2015, Nature.

[15]  C. Regal,et al.  Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit. , 2015, Physical review letters.

[16]  G. Prodi,et al.  Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications , 2015, 1601.02669.

[17]  M. Sillanpää,et al.  Squeezing of Quantum Noise of Motion in a Micromechanical Resonator. , 2015, Physical review letters.

[18]  A. Clerk,et al.  Quantum squeezing of motion in a mechanical resonator , 2015, Science.

[19]  G. Prodi,et al.  Probing deformed commutators with macroscopic harmonic oscillators , 2014, Nature Communications.

[20]  N. Okada,et al.  Towards LHC physics with nonlocal Standard Model , 2014, 1407.3331.

[21]  S. Girvin,et al.  Measurement of the motional sidebands of a nanogram-scale oscillator in the quantum regime , 2014, 1406.7254.

[22]  R. W. Simmonds,et al.  Optomechanical Raman-ratio thermometry , 2014, 1406.7247.

[23]  G. Prodi,et al.  Investigation on Planck scale physics by the AURIGA gravitational bar detector , 2014 .

[24]  G. Prodi,et al.  Design of silicon micro-resonators with low mechanical and optical losses for quantum optics experiments , 2014 .

[25]  C. Ching,et al.  Generalized coherent states under deformed quantum mechanics with maximum momentum , 2013 .

[26]  T. Kippenberg,et al.  Cavity Optomechanics , 2013, 1303.0733.

[27]  G. Prodi,et al.  Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables , 2012, Nature Physics.

[28]  P. Pedram Coherent States in Gravitational Quantum Mechanics , 2012, 1204.1524.

[29]  S. Hossenfelder Minimal Length Scale Scenarios for Quantum Gravity , 2012, Living reviews in relativity.

[30]  Oskar Painter,et al.  Observation of quantum motion of a nanomechanical resonator. , 2012, Physical review letters.

[31]  P. Pedram New Approach to Nonperturbative Quantum Mechanics with Minimal Length Uncertainty , 2011, 1112.2327.

[32]  Michael R. Vanner,et al.  Probing Planck-scale physics with quantum optics , 2011, Nature Physics.

[33]  T. Takeuchi,et al.  Position and Momentum Uncertainties of the Normal and Inverted Harmonic Oscillators under the Minimal Length Uncertainty Relation , 2011, 1109.2680.

[34]  Naples,et al.  No quantum gravity signature from the farthest quasars , 2011, 1108.6005.

[35]  Saurya Das,et al.  A proposal for testing quantum gravity in the lab , 2011, 1107.3164.

[36]  Peter A. Norreys,et al.  Simulations of efficient Raman amplification into the multipetawatt regime , 2010 .

[37]  H. Kleinert,et al.  Uncertainty relation on a world crystal and its applications to micro black holes , 2009, 0912.2253.

[38]  C. Quesne,et al.  Composite system in deformed space with minimal length , 2009, 0906.0050.

[39]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[40]  R. E. Hughes,et al.  A limit on the variation of the speed of light arising from quantum gravity effects , 2009, Nature.

[41]  Fermi Gbmlat Collaborations Testing Einstein's special relativity with Fermi's short hard gamma-ray burst GRB090510 , 2009, 0908.1832.

[42]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[43]  Saurya Das,et al.  Universality of quantum gravity corrections. , 2008, Physical review letters.

[44]  A. M. Jayich,et al.  Dispersive optomechanics: a membrane inside a cavity , 2008, 0805.3723.

[45]  T. Piran,et al.  Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation , 2006, hep-ph/0607145.

[46]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[47]  K. Nozari,et al.  Gravitational induced uncertainty and dynamics of harmonic oscillator , 2006 .

[48]  K. Nozari Some aspects of Planck scale quantum optics , 2005, hep-th/0508078.

[49]  S. Weinberg Quantum contributions to cosmological correlations , 2005, hep-th/0506236.

[50]  P. Kok,et al.  Gravitational decoherence , 2003, gr-qc/0306084.

[51]  D. Minic,et al.  Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations , 2001, hep-th/0111181.

[52]  S. Hossenfelder,et al.  Black Hole Production in Large Extra Dimensions at the Tevatron: Possibility for a First Glimpse on TeV Scale Gravity , 2001, hep-ph/0112186.

[53]  F. Scardigli Generalized Uncertainty Principle in Quantum Gravity from Micro-Black Hole Gedanken Experiment , 1999, hep-th/9904025.

[54]  G. Amelino-Camelia Gravity-wave interferometers as quantum-gravity detectors , 1999, Nature.

[55]  John Ellis,et al.  Tests of quantum gravity from observations of γ-ray bursts , 1998, Nature.

[56]  Luis Javier Garay Elizondo,et al.  Quantum-gravity and minimum length , 1995 .

[57]  Mann,et al.  Hilbert space representation of the minimal length uncertainty relation. , 1994, Physical review. D, Particles and fields.

[58]  L. Garay Quantum Gravity and Minimum Length , 1994, gr-qc/9403008.

[59]  A. Polyakov,et al.  The string dilation and a least coupling principle , 1994, hep-th/9401069.

[60]  M. Maggiore A generalized uncertainty principle in quantum gravity , 1993, hep-th/9301067.

[61]  D. Gross,et al.  String Theory Beyond the Planck Scale , 1988 .

[62]  D. Amati,et al.  Superstring collisions at planckian energies , 1987 .