Probing quantum gravity effects with quantum mechanical oscillators
暂无分享,去创建一个
G. Prodi | P. Sarro | Wenlin Li | E. Serra | F. Marino | G. Giuseppe | D. Vitali | B. Morana | N. Malossi | F. Marin | A. Borrielli | M. Bonaldi | A. Chowdhury | R. Natali | P. Piergentili | P. Vezio | W. Li | G. Di Giuseppe
[1] M. Plenio,et al. On quantum gravity tests with composite particles , 2019, Nature Communications.
[2] G. Prodi,et al. Quantum Signature of a Squeezed Mechanical Oscillator. , 2019, Physical review letters.
[3] S. Danilishin,et al. Testing the generalized uncertainty principle with macroscopic mechanical oscillators and pendulums , 2019, Physical Review D.
[4] S. Marsat,et al. Quantum gravity and gravitational-wave astronomy , 2019, Journal of Cosmology and Astroparticle Physics.
[5] S. Danilishin,et al. Testing of Quantum Gravity With Sub-Kilogram Acoustic Resonators , 2019, 1903.03346.
[6] G. Prodi,et al. Calibrated quantum thermometry in cavity optomechanics , 2018, Quantum Science and Technology.
[7] G. Prodi,et al. Silicon Nitride MOMS Oscillator for Room Temperature Quantum Optomechanics , 2018, Journal of Microelectromechanical Systems.
[8] M. Plenio,et al. Quantum-optical tests of Planck-scale physics , 2017, Physical Review A.
[9] J. Lang,et al. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing. , 2017, Physical review letters.
[10] André Großardt,et al. Gravitational decoherence , 2017, 1706.05677.
[11] Michael R. Vanner,et al. Amplified transduction of Planck-scale effects using quantum optics , 2016, 1610.06796.
[12] G. Prodi,et al. Control of Recoil Losses in Nanomechanical SiN Membrane Resonators , 2016, 1607.04485.
[13] A. Clerk,et al. Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit. , 2016, Physical review letters.
[14] Joshua A. Slater,et al. Non-classical correlations between single photons and phonons from a mechanical oscillator , 2015, Nature.
[15] C. Regal,et al. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit. , 2015, Physical review letters.
[16] G. Prodi,et al. Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications , 2015, 1601.02669.
[17] M. Sillanpää,et al. Squeezing of Quantum Noise of Motion in a Micromechanical Resonator. , 2015, Physical review letters.
[18] A. Clerk,et al. Quantum squeezing of motion in a mechanical resonator , 2015, Science.
[19] G. Prodi,et al. Probing deformed commutators with macroscopic harmonic oscillators , 2014, Nature Communications.
[20] N. Okada,et al. Towards LHC physics with nonlocal Standard Model , 2014, 1407.3331.
[21] S. Girvin,et al. Measurement of the motional sidebands of a nanogram-scale oscillator in the quantum regime , 2014, 1406.7254.
[22] R. W. Simmonds,et al. Optomechanical Raman-ratio thermometry , 2014, 1406.7247.
[23] G. Prodi,et al. Investigation on Planck scale physics by the AURIGA gravitational bar detector , 2014 .
[24] G. Prodi,et al. Design of silicon micro-resonators with low mechanical and optical losses for quantum optics experiments , 2014 .
[25] C. Ching,et al. Generalized coherent states under deformed quantum mechanics with maximum momentum , 2013 .
[26] T. Kippenberg,et al. Cavity Optomechanics , 2013, 1303.0733.
[27] G. Prodi,et al. Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables , 2012, Nature Physics.
[28] P. Pedram. Coherent States in Gravitational Quantum Mechanics , 2012, 1204.1524.
[29] S. Hossenfelder. Minimal Length Scale Scenarios for Quantum Gravity , 2012, Living reviews in relativity.
[30] Oskar Painter,et al. Observation of quantum motion of a nanomechanical resonator. , 2012, Physical review letters.
[31] P. Pedram. New Approach to Nonperturbative Quantum Mechanics with Minimal Length Uncertainty , 2011, 1112.2327.
[32] Michael R. Vanner,et al. Probing Planck-scale physics with quantum optics , 2011, Nature Physics.
[33] T. Takeuchi,et al. Position and Momentum Uncertainties of the Normal and Inverted Harmonic Oscillators under the Minimal Length Uncertainty Relation , 2011, 1109.2680.
[34] Naples,et al. No quantum gravity signature from the farthest quasars , 2011, 1108.6005.
[35] Saurya Das,et al. A proposal for testing quantum gravity in the lab , 2011, 1107.3164.
[36] Peter A. Norreys,et al. Simulations of efficient Raman amplification into the multipetawatt regime , 2010 .
[37] H. Kleinert,et al. Uncertainty relation on a world crystal and its applications to micro black holes , 2009, 0912.2253.
[38] C. Quesne,et al. Composite system in deformed space with minimal length , 2009, 0906.0050.
[39] S. Girvin,et al. Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.
[40] R. E. Hughes,et al. A limit on the variation of the speed of light arising from quantum gravity effects , 2009, Nature.
[41] Fermi Gbmlat Collaborations. Testing Einstein's special relativity with Fermi's short hard gamma-ray burst GRB090510 , 2009, 0908.1832.
[42] Kerry Vahala,et al. Cavity opto-mechanics. , 2007, Optics express.
[43] Saurya Das,et al. Universality of quantum gravity corrections. , 2008, Physical review letters.
[44] A. M. Jayich,et al. Dispersive optomechanics: a membrane inside a cavity , 2008, 0805.3723.
[45] T. Piran,et al. Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation , 2006, hep-ph/0607145.
[46] T. Briant,et al. Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.
[47] K. Nozari,et al. Gravitational induced uncertainty and dynamics of harmonic oscillator , 2006 .
[48] K. Nozari. Some aspects of Planck scale quantum optics , 2005, hep-th/0508078.
[49] S. Weinberg. Quantum contributions to cosmological correlations , 2005, hep-th/0506236.
[50] P. Kok,et al. Gravitational decoherence , 2003, gr-qc/0306084.
[51] D. Minic,et al. Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations , 2001, hep-th/0111181.
[52] S. Hossenfelder,et al. Black Hole Production in Large Extra Dimensions at the Tevatron: Possibility for a First Glimpse on TeV Scale Gravity , 2001, hep-ph/0112186.
[53] F. Scardigli. Generalized Uncertainty Principle in Quantum Gravity from Micro-Black Hole Gedanken Experiment , 1999, hep-th/9904025.
[54] G. Amelino-Camelia. Gravity-wave interferometers as quantum-gravity detectors , 1999, Nature.
[55] John Ellis,et al. Tests of quantum gravity from observations of γ-ray bursts , 1998, Nature.
[56] Luis Javier Garay Elizondo,et al. Quantum-gravity and minimum length , 1995 .
[57] Mann,et al. Hilbert space representation of the minimal length uncertainty relation. , 1994, Physical review. D, Particles and fields.
[58] L. Garay. Quantum Gravity and Minimum Length , 1994, gr-qc/9403008.
[59] A. Polyakov,et al. The string dilation and a least coupling principle , 1994, hep-th/9401069.
[60] M. Maggiore. A generalized uncertainty principle in quantum gravity , 1993, hep-th/9301067.
[61] D. Gross,et al. String Theory Beyond the Planck Scale , 1988 .
[62] D. Amati,et al. Superstring collisions at planckian energies , 1987 .