Bisection of bounded treewidth graphs by convolutions

[1]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[2]  Robert Krauthgamer,et al.  Approximating the minimum bisection size (extended abstract) , 2000, STOC '00.

[3]  Zevi Miller,et al.  A parallel algorithm for bisection width in trees , 1988 .

[4]  Nisheeth K. Vishnoi,et al.  The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l/sub 1/ , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[5]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, SIAM J. Comput..

[6]  Robert Krauthgamer,et al.  A Polylogarithmic Approximation of the Minimum Bisection , 2002, SIAM J. Comput..

[7]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[8]  Frank Thomson Leighton,et al.  Improving the Performance of the Kernighan-Lin and Simulated Annealing Graph Bisection Algorithms , 1989, 26th ACM/IEEE Design Automation Conference.

[9]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[10]  Thang Nguyen Bui,et al.  An Ant System Algorithm For Graph Bisection , 2002, GECCO.

[11]  Frank Thomson Leighton,et al.  Graph bisection algorithms with good average case behavior , 1984, Comb..

[12]  René van Bevern,et al.  On the Parameterized Complexity of Computing Graph Bisections , 2013, WG.

[13]  Klaus Jansen,et al.  Polynomial Time Approximation Schemes for MAX-BISECTION on Planar and Geometric Graphs , 2001, SIAM J. Comput..

[14]  Moshe Lewenstein,et al.  Clustered Integer 3SUM via Additive Combinatorics , 2015, STOC.

[15]  Piotr Indyk,et al.  Better Approximations for Tree Sparsity in Nearly-Linear Time , 2017, SODA.

[16]  Richard Ryan Williams,et al.  Subcubic Equivalences between Path, Matrix and Triangle Problems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[17]  Andrew M. Peck,et al.  Partitioning Planar Graphs , 1992, SIAM J. Comput..

[18]  V. V. Williams ON SOME FINE-GRAINED QUESTIONS IN ALGORITHMS AND COMPLEXITY , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[19]  Michal Pilipczuk,et al.  Minimum bisection is fixed parameter tractable , 2013, STOC.

[20]  Marek Cygan,et al.  On Problems Equivalent to (min,+)-Convolution , 2017, ICALP.

[21]  Harald Räcke,et al.  Optimal hierarchical decompositions for congestion minimization in networks , 2008, STOC.