Coexistence of variants in TBK1 and in other ALS-related genes elucidates an oligogenic model of pathogenesis in sporadic ALS

[1]  Robert H. Brown,et al.  ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function , 2018, Neurobiology of Aging.

[2]  S. Klebe,et al.  Comprehensive analysis of the mutation spectrum in 301 German ALS families , 2018, Journal of Neurology, Neurosurgery, and Psychiatry.

[3]  C. Broeckhoven,et al.  Common and rare TBK1 variants in early-onset Alzheimer disease in a European cohort , 2018, Neurobiology of Aging.

[4]  A. Chiò,et al.  Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications , 2018, The Lancet Neurology.

[5]  M. Bee,et al.  ATXN1 intermediate-length polyglutamine expansions are associated with amyotrophic lateral sclerosis , 2017, Neurobiology of Aging.

[6]  J. Clarimón,et al.  Analysis of known amyotrophic lateral sclerosis and frontotemporal dementia genes reveals a substantial genetic burden in patients manifesting both diseases not carrying the C9orf72 expansion mutation , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[7]  L. Pozzi,et al.  TBK1 mutations in Italian patients with amyotrophic lateral sclerosis: genetic and functional characterisation , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[8]  Ashley R. Jones,et al.  A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK , 2017, Brain : a journal of neurology.

[9]  Seungbok Lee,et al.  Genetic and functional analysis of TBK1 variants in Korean patients with sporadic amyotrophic lateral sclerosis , 2017, Neurobiology of Aging.

[10]  G. Tasca,et al.  Matrin 3 variants are frequent in Italian ALS patients , 2017, Neurobiology of Aging.

[11]  F. Jessen,et al.  TBK1 Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis , 2017, Human mutation.

[12]  F. Shewmaker,et al.  Stress granules at the intersection of autophagy and ALS , 2016, Brain Research.

[13]  Hannah A. Pliner,et al.  TBK1 is associated with ALS and ALS-FTD in Sardinian patients , 2016, Neurobiology of Aging.

[14]  Qing Liu,et al.  Screening of the TBK1 gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin , 2016, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[15]  C. van Broeckhoven,et al.  Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort , 2015, Neurology.

[16]  M. Marshall,et al.  Novel TBK1 truncating mutation in a familial amyotrophic lateral sclerosis patient of Chinese origin , 2015, Neurobiology of Aging.

[17]  B. Dubois,et al.  TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts , 2015, Neurobiology of Aging.

[18]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[19]  Hui Yang,et al.  Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR , 2015, Nature Protocols.

[20]  O. Hardiman,et al.  A revision of the El Escorial criteria - 2015 , 2015, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[21]  Kevin F. Bieniek,et al.  Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease , 2015, Acta Neuropathologica.

[22]  P. Tsai,et al.  Mutational analysis of TBK1 in Taiwanese patients with amyotrophic lateral sclerosis , 2015, Neurobiology of Aging.

[23]  P. Rossini,et al.  Primary fibroblasts cultures reveal TDP-43 abnormalities in amyotrophic lateral sclerosis patients with and without SOD1 mutations , 2015, Neurobiology of Aging.

[24]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[25]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[26]  B. Frey,et al.  The human splicing code reveals new insights into the genetic determinants of disease , 2015, Science.

[27]  Eric Boerwinkle,et al.  In silico prediction of splice-altering single nucleotide variants in the human genome , 2014, Nucleic acids research.

[28]  I. Bozzoni,et al.  An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA–FUS regulatory circuitry , 2014, Nature Communications.

[29]  P. Rossini,et al.  Mutations in the 3' untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. , 2013, Human molecular genetics.

[30]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in cases with previously identified pathogenic mutations , 2013, Neurology.

[31]  Leonard H van den Berg,et al.  Evidence for an oligogenic basis of amyotrophic lateral sclerosis. , 2012, Human molecular genetics.

[32]  P. Rossini,et al.  Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease , 2012, Neurology.

[33]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[34]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.