High-order adaptive optical system for Big Bear Solar Observatory

We present a high-order adaptive optical system for the 26-inch vacuum solar telescope of Big Bear Solar Observatory. A small elliptical tip/tilt mirror is installed at the end of the existing coude optical path on the fast two-axis tip/tilt platform with its resonant frequency around 3.3 kHz. A 77 mm diameter deformable mirror with 76 subapertures as well as wave-front sensors (correlation tracker and Shack-Hartman) and scientific channels for visible and IR polarimetry are installed on an optical table. The correlation tracker sensor can detect differences at 2 kHz between a 32×32 reference frame and real time frames. The WFS channel detects 2.5 kHz (in binned mode) high-order wave-front atmosphere aberrations to improve solar images for two imaging magnetographs based on Fabry-Perot etalons in telecentric configurations. The imaging magnetograph channels may work simultaneously in a visible and IR spectral windows with FOVs of about 180×180 arc sec, spatial resolution of about 0.2 arc sec/pixel and SNR of about 400 and 600 accordingly for 0.25 sec integration time.