Modeling of Nanoscale MOSFET Performance in the Velocity Saturation Region

Velocity saturation as a function of temperature and drain voltage for n-channel MOSFET is investigated. The combination of an existing current-voltage (I-V) model, drain source resistance model and a more precise mobility derivation gives an accurate representation of velocity saturation as a function of the above parameters. A simplified threshold voltage formulation is developed to provide similar accuracy when compared to actual devices. The models show good agreement with the experimental data over a wide range of gate and drain bias for 90nm process technology.

[1]  M. Pattanaik,et al.  A new approach to model the I/spl sim/V characteristics for nanoscale MOSFETs , 2003, 2003 International Symposium on VLSI Technology, Systems and Applications. Proceedings of Technical Papers. (IEEE Cat. No.03TH8672).

[2]  Paul D. Agnello,et al.  Process requirements for continued scaling of CMOS-the need and prospects for atomic-level manipulation , 2002, IBM J. Res. Dev..

[3]  S. Russek,et al.  Semi-empirical equations for electron velocity in silicon: Part II—MOS inversion layer , 1983, IEEE Transactions on Electron Devices.

[4]  K. Y. Lim,et al.  A physically-based semi-empirical series resistance model for deep-submicron MOSFET I-V modeling , 2000 .

[5]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[6]  C. Hu,et al.  Observation of velocity overshoot in silicon inversion layers , 1993, IEEE Electron Device Letters.

[7]  J. Hauser,et al.  Extraction of experimental mobility data for MOS devices , 1996 .

[8]  T. DeMassa,et al.  Threshold voltage variations with temperature in MOS transistors , 1971 .

[9]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[10]  Lex A. Akers,et al.  Threshold voltage models of short, narrow and small geometry MOSFET's: A review , 1982 .

[11]  D. A. Antoniadis,et al.  New insights into carrier transport in n-MOSFETs , 2002, IBM J. Res. Dev..

[12]  Xing Zhou,et al.  Unified MOSFET compact I-V model formulation through physics-based effective transformation , 2001 .

[13]  Xing Zhou,et al.  A physically-based semi-empirical effective mobility model for MOSFET compact I- V modeling , 2001 .

[14]  R.V.H. Booth,et al.  Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET's , 1987 .

[15]  Takayasu Sakurai,et al.  A simple MOSFET model for circuit analysis , 1991 .

[16]  Norman G. Einspruch,et al.  Vlsi Electronics: Microstructure Science , 1982 .

[17]  Christine M. Maziar,et al.  Physically-based models for effective mobility and local-field mobility of electrons in MOS inversion layers , 1991 .

[18]  V. K. Arora,et al.  The electron temperature in nanostructures subjected to a high electric field , 2002, ICONIP '02. Proceedings of the 9th International Conference on Neural Information Processing. Computational Intelligence for the E-Age (IEEE Cat. No.02EX575).

[19]  Xing Zhou,et al.  A simple and unambiguous definition of threshold voltage and its implications in deep-submicron MOS device modeling , 1999 .

[20]  V. K. Arora,et al.  High-field effects in sub-micron devices , 2000, COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices.

[21]  Ping K. Ko,et al.  Chapter 1 - Approaches to Scaling , 1989 .