Quantitative analyses of anaerobic wastewater treatment processes: identifiability and parameter estimation.

We investigated the problem of identifying the parameters of a nonlinear fifth order model describing the population dynamics of two main bacterial groups in an anaerobic wastewater treatment process. In addition to addressing problems concerning structural and practical identifiability, we also analyzed how mathematical descriptions of bacterial population dynamics can model real data. Using three data sets recorded under different experimental conditions, we estimated important biochemical parameters and demonstrated that our model could describe the data successfully. Parameters, which are simultaneously determined using information from all three experiments, have more reliable estimates. We conclude that, after appropriate estimation, this model can be used for optimization and the control of continuous processes.

[1]  C. Wandrey,et al.  Anaerobic Waste Water Process Models , 2001 .

[2]  Dongming Wang,et al.  An Implementation of the Characteristic Set Method in Maple , 1995 .

[3]  B. Ahring Methanogenesis in thermophilic biogas reactors , 2004, Antonie van Leeuwenhoek.

[4]  M. Kendall Theoretical Statistics , 1956, Nature.

[5]  S. Jeyaseelan,et al.  A simple mathematical model for anaerobic digestion process , 1997 .

[6]  Ghislaine Joly-Blanchard,et al.  Some effective approaches to check the identifiability of uncontrolled nonlinear systems , 2001 .

[7]  P. Greenfield,et al.  Measuring in situ bacterial specific growth rates and population dynamics in wastewater , 1997 .

[8]  Georges Bastin,et al.  Identification of a Bio-Methanization Process: A Case Study , 1982 .

[9]  K R Godfrey,et al.  Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. , 1990, Mathematical biosciences.

[10]  A. Ghaly,et al.  Amelioration of methane yield in cheese whey fermentation by controlling the pH of the methanogenic stage , 1991 .

[11]  Iv. Simeonov,et al.  Dynamic modeling of mesophilic anaerobic digestion of animal waste , 1996 .

[12]  S. Kalyuzhnyi,et al.  Two-particle model of anaerobic solid state fermentation. , 2000, Water science and technology : a journal of the International Association on Water Pollution Research.

[13]  M. Gyllenberg,et al.  Sensitivity analysis and parameter estimation in a model of anaerobic waste water treatment processes with substrate inhibition , 2000 .

[14]  R. B. Newell,et al.  Mathematical modelling of prefermenters—II. Model applications , 1999 .

[15]  Peter A. Vanrolleghem,et al.  Advanced instrumentation, data interpretation, and control of biotechnological processes , 1998 .

[16]  K. Krauth,et al.  Population dynamics in anaerobic wastewater reactors: modelling and in situ characterization , 1999 .

[17]  D. Dochain,et al.  Bioprocess Model Identification , 1998 .

[18]  A. Holmberg On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities , 1982 .

[19]  A. Husain Mathematical models of the kinetics of anaerobic digestion--a selected review , 1998 .

[20]  B. Ahring,et al.  A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition , 1993, Biotechnology and bioengineering.

[21]  S. Ainsworth Steady State Enzyme Kinetics , 1977 .

[22]  Hans-Joachim Jördening,et al.  Comparison of different models of substrate and product inhibition in anaerobic digestion , 1999 .

[23]  D. T. Hill,et al.  A dynamic model for simulation of animal waste digestion , 1977 .

[24]  Ghislaine Joly-Blanchard,et al.  Some Remarks about an Identifiability Result of Nonlinear Systems , 1998, Autom..

[25]  R. B. Newell,et al.  Mathematical modelling of prefermenters—I. Model development and verification , 1999 .

[26]  P A Vanrolleghem,et al.  An overview of the posters presented at Watermatex 2000. III: Model selection and calibration/optimal experimental design. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[27]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[28]  B. Ahring,et al.  Anaerobic digestion of swine manure: Inhibition by ammonia , 1998 .

[29]  William H. Press,et al.  Numerical recipes , 1990 .

[30]  Kenneth K. Tanji,et al.  Physical and mathematical modelling of anaerobic digestion of organic wastes , 1997 .

[31]  D. Massé,et al.  Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor , 2000 .

[32]  Denis Dochain,et al.  Structural Identifiability of Biokinetic Models of Activated-sludge Respiration , 1995 .

[33]  Denis Dochain,et al.  Modelling and Adaptive Control of a Continuous Anaerobic Fermentation Process , 1983 .

[34]  D. T. Hill,et al.  The kinetics of inhibition in methane fermentation of swine manure , 1983 .

[35]  I. Angelidaki,et al.  A comprehensive model of anaerobic bioconversion of complex substrates to biogas , 1999, Biotechnology and bioengineering.

[36]  H. Rabitz,et al.  Similarity transformation approach to identifiability analysis of nonlinear compartmental models. , 1989, Mathematical biosciences.

[37]  J. Babary,et al.  Theoretical and practical identifiability of a reduced order model in an activated sludge process doing nitrification and denitrification , 1998 .

[38]  U. Wiesmann,et al.  Degradation kinetics of acetate and propionate by immobilized anaerobic mixed cultures , 1995 .