Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: the 1997 eruption of Okmok volcano, Alaska

Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154/spl plusmn/0.025 km/sup 3/. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.

[1]  Giorgio Franceschetti,et al.  Digital elevation model generation using ascending and descending ERS-1/ERS-2 tandem data , 1999 .

[2]  M. E. Mackay,et al.  Topographic analyses of K*lauea Volcano, Hawai'i, from interferometric airborne radar , 1999 .

[3]  J. Crisp Rates of magma emplacement and volcanic output , 1984 .

[4]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[5]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[6]  Zhong Lu,et al.  Satellite radar interferometry measures deformation at Okmok Volcano , 1998 .

[7]  Richard M. Goldstein,et al.  Atmospheric limitations to repeat‐track radar interferometry , 1995 .

[8]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[9]  P. Rosen,et al.  SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH'S SURFACE TOPOGRAPHY AND ITS DEFORMATION , 2000 .

[10]  K. Mogi Relations between the Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces around them , 1958 .

[11]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[12]  Giovanni Alberti,et al.  The TOPSAR interferometric radar topographic mapping instrument , 1992, IEEE Trans. Geosci. Remote. Sens..

[13]  Charles A. Williams,et al.  Post-emplacement lava subsidence and the accuracy of ERS InSAR digital elevation models of volcanoes , 2001 .

[14]  G. Wadge The storage and release of magma on Mount Etna , 1977 .

[15]  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .

[16]  Zhong Lu,et al.  Deformation associated with the 1997 eruption of Okmok volcano, Alaska , 2002 .

[17]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[18]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[19]  Luciano Vieira Dutra,et al.  Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study , 1996, IEEE Trans. Geosci. Remote. Sens..

[20]  Søren Nørvang Madsen,et al.  Analysis and evaluation of the NASA/JPL TOPSAR across-track interferometric SAR system , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[21]  J. Murray,et al.  New formulae for estimating lava flow volumes at Mt. Etna Volcano, Sicily , 2000 .

[22]  D. Dzurisin,et al.  Variations in magma supply rate at Kilauea Volcano, Hawaii , 1993 .

[23]  G. Wadge,et al.  Lava flow volume and morphology from digitised contour maps : a case study at Mount Etna, Sicily , 1999 .

[24]  F. Webb,et al.  Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR C radar interferometry , 1996 .

[25]  T. Farr,et al.  Shuttle radar topography mission produces a wealth of data , 2000 .

[26]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[27]  D. Richter,et al.  Catalog of the historically active volcanoes of Alaska , 1998 .

[28]  Zhong Lu,et al.  Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations , 2000 .

[29]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[30]  K. Dean,et al.  The 1997 eruption of Okmok Volcano, Alaska: a synthesis of remotely sensed imagery , 2003 .

[31]  A. Laurence Gray,et al.  Repeat-pass interferometry with airborne synthetic aperture radar , 1993, IEEE Trans. Geosci. Remote. Sens..

[32]  Søren Nørvang Madsen,et al.  Topographic mapping using radar interferometry: processing techniques , 1993, IEEE Trans. Geosci. Remote. Sens..