Period-Doubling Scenario without flip bifurcations in a One-Dimensional Map

In this work a one-dimensional piecewise-smooth dynamical system, representing a Poincare return map for dynamical systems of the Lorenz type, is investigated. The system shows a bifurcation scenario similar to the classical period-doubling one, but which is influenced by so-called border collision phenomena and denoted as border collision period-doubling bifurcation scenario. This scenario is formed by a sequence of pairs of bifurcations, whereby each pair consists of a border collision bifurcation and a pitchfork bifurcation. The mechanism leading to this scenario and its characteristic properties, like symmetry-breaking and symmetry-recovering as well as emergence of coexisting attractors, are investigated.

[1]  Mitrajit Dutta,et al.  Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems , 1999 .

[2]  Celso Grebogi,et al.  Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.

[3]  Erik Mosekilde,et al.  Border-collision bifurcations on a two-dimensional torus , 2002 .

[4]  Soumitro Banerjee,et al.  Border collision bifurcations at the change of state-space dimension. , 2002, Chaos.

[5]  Luigi Glielmo,et al.  Switchings, bifurcations, and chaos in DC/DC converters , 1998 .

[6]  K. Johansson,et al.  On the occurrence of sliding bifurcations in piecewise smooth dynamical systems , 1999 .

[7]  M. I. Feigin,et al.  On the structure of C-bifurcation boundaries of piecewise-continuous systems , 1978 .

[8]  M. I. Feigin,et al.  Doubling of the oscillation period with C-bifurcations in piecewise-continuous systems: PMM vol. 34, n≗5, 1970, pp. 861–869 , 1970 .

[9]  Procaccia,et al.  New universal scenarios for the onset of chaos in Lorenz-type flows. , 1986, Physical review letters.

[10]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[11]  Periodic orbits for interval maps with sharp cusps , 1991 .

[12]  Lamba,et al.  Scaling of Lyapunov exponents at nonsmooth bifurcations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  W. Thurston,et al.  On iterated maps of the interval , 1988 .

[14]  C J Budd,et al.  Grazing and border-collision in piecewise-smooth systems: a unified analytical framework. , 2001, Physical review letters.

[15]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[16]  Existence of multiple attractors and the nature of bifurcations in a discontinuous logistic map , 1998 .

[17]  James A. Yorke,et al.  Border-collision bifurcations in the buck converter , 1998 .

[18]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[19]  Karl Popp,et al.  Dynamics of oscillators with impact and friction , 1997 .

[20]  Volodymyr L. Maistrenko,et al.  On period-adding sequences of attracting cycles in piecewise linear maps , 1998 .

[21]  Leon O. Chua,et al.  BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .

[22]  Erik Mosekilde,et al.  Border-Collision bifurcations and Chaotic oscillations in a piecewise-Smooth Dynamical System , 2001, Int. J. Bifurc. Chaos.

[23]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[24]  Chi K. Tse,et al.  Complex behavior in switching power converters , 2002, Proc. IEEE.

[25]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[26]  Procaccia,et al.  First-return maps as a unified renormalization scheme for dynamical systems. , 1987, Physical review. A, General physics.

[27]  Alan R. Champneys,et al.  Normal form maps for grazing bifurcations in n -dimensional piecewise-smooth dynamical systems , 2001 .

[28]  Jensen,et al.  Images of the critical points of nonlinear maps. , 1985, Physical review. A, General physics.

[29]  Tomasz Kapitaniak,et al.  Co-existing attractors of impact oscillator , 1998 .

[30]  Erik Mosekilde,et al.  Quasi-periodicity and border-collision bifurcations in a DC-DC converter with pulsewidth modulation , 2003 .

[31]  Leon O. Chua,et al.  Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.

[32]  Grebogi,et al.  Grazing bifurcations in impact oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  A. Sharkovsky,et al.  Chaos in Some 1-D Discontinuous Maps that Apper in the Analysis of Electrical Circuits , 1993 .

[34]  H. H. C. Iu,et al.  Bifurcation behavior in parallel-connected buck converters , 2001 .

[35]  Zheng Applied symbolic dynamics for the Lorenz-like map. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[36]  Adriano A. Batista,et al.  Bifurcations from steady sliding to stick slip in boundary lubrication , 1998 .

[37]  Alan R. Champneys,et al.  Corner collision implies border-collision bifurcation , 2001 .

[38]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  F. Peterka,et al.  Bifurcations and transition phenomena in an impact oscillator , 1996 .

[40]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[41]  Volodymyr L. Maistrenko,et al.  Bifurcations of attracting cycles of piecewise linear interval maps , 1996 .

[42]  Soumitro Banerjee,et al.  Bifurcations due to transition from continuous conduction mode to discontinuous conduction mode in the boost converter , 2003 .

[43]  A. Nordmark Universal limit mapping in grazing bifurcations , 1997 .

[44]  S. Foale Analytical determination of bifurcations in an impact oscillator , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[45]  Annette Witt,et al.  Basin bifurcation in quasiperiodically forced systems , 1998 .

[46]  J. Molenaar,et al.  Mappings of grazing-impact oscillators , 2001 .

[47]  Pérez Mechanism for global features of chaos in a driven nonlinear oscillator. , 1985, Physical review. A, General physics.

[48]  Lawrence N. Virgin,et al.  An experimental impact oscillator , 1997 .

[49]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[50]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[51]  Tomasz Kapitaniak,et al.  Dynamics of impact oscillator with dry friction , 1996 .

[52]  Mario di Bernardo,et al.  Grazing, skipping and sliding: Analysis of the non-smooth dynamics of the DC/DC buck converter , 1998 .

[53]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[54]  Mario di Bernardo,et al.  On a Novel Class of Bifurcations in Hybrid Dynamical Systems , 2001, HSCC.

[55]  M. I. Feigin,et al.  On the generation of sets of subharmonic modes in a piecewbe-continuous system: PMM vol.38, n≗5, 1974, pp. 810–818 , 1974 .