A Quadratic Lower Bound for Three-Query Linear Locally Decodable Codes over Any Field

A linear (q, δ, ϵ,m(n))-locally decodable code (LDC) C : $ {\mathbb F} $n→$ {\mathbb F} $m(n) is a linear transformation from the vector space $ {\mathbb F} $n to the space $ {\mathbb F} $m(n) for which each message symbol xi can be recovered with probability at least $ \frac{1}{{\left| \mathbb{F} \right|}} + \varepsilon $ from C(x) by a randomized algorithm that queries only q positions of C(x), even if up to δm(n) positions of C(x) are corrupted. In a recent work of Dvir, the author shows that lower bounds for linear LDCs can imply lower bounds for arithmetic circuits. He suggests that proving lower bounds for LDCs over the complex or real field is a good starting point for approaching one of his conjectures. Our main result is an m(n) = Ω(n2) lower bound for linear 3-query LDCs over any, possibly infinite, field. The constant in the Ω(·) depends only on ε and δ. This is the first lower bound better than the trivial m(n) = Ω(n) for arbitrary fields and more than two queries.

[1]  Parikshit Gopalan,et al.  A note on Efremenko's Locally Decodable Codes , 2009, Electron. Colloquium Comput. Complex..

[2]  Zeev Dvir,et al.  Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits , 2005, STOC '05.

[3]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[4]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[5]  David P. Woodruff New Lower Bounds for General Locally Decodable Codes , 2007, Electron. Colloquium Comput. Complex..

[6]  Ronald de Wolf,et al.  Exponential lower bound for 2-query locally decodable codes via a quantum argument , 2002, STOC '03.

[7]  Luca Trevisan,et al.  Lower bounds for linear locally decodable codes and private information retrieval , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[8]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[9]  Zeev Dvir,et al.  Matching Vector Codes , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[10]  Klim Efremenko,et al.  3-Query Locally Decodable Codes of Subexponential Length , 2008 .

[11]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[12]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[13]  Andrea Montanari,et al.  The Noise-Sensitivity Phase Transition in Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[14]  Sergey Yekhanin,et al.  Locally Decodable Codes and Private Information Retrieval Schemes , 2010, Information Security and Cryptography.

[15]  Anna Gál,et al.  Three Query Locally Decodable Codes with Higher Correctness Require Exponential Length , 2011, STACS.

[16]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[17]  Luca Trevisan,et al.  Some Applications of Coding Theory in Computational Complexity , 2004, Electron. Colloquium Comput. Complex..

[18]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[19]  Yasuhiro Suzuki,et al.  Improved Constructions for Query-Efficient Locally Decodable Codes of Subexponential Length , 2008, IEICE Trans. Inf. Syst..

[20]  Zeev Dvir,et al.  On Matrix Rigidity and Locally Self-correctable Codes , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.

[21]  David P. Woodruff Corruption and Recovery-Efficient Locally Decodable Codes , 2008, APPROX-RANDOM.

[22]  Kenji Obata,et al.  Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes , 2002, RANDOM.

[23]  D. Spielman,et al.  Expander codes , 1996 .