Myocardial substrate utilization and hemodynamics following repeated coronary flow reduction in pigs

[1]  J. Williamson,et al.  Analysis of control of glycolysis in ischemic hearts having heterogeneous zones of anoxia. , 1978, Journal of molecular and cellular cardiology.

[2]  H. Schamhardt,et al.  Antiarrhythmic, metabolic and hemodynamic effects of Org 6001 (3alpha-amino-5alpha-androstan-2beta-ol-17-one-hydrochloride) after coronary flow reduction in pigs. , 1978, The Journal of pharmacology and experimental therapeutics.

[3]  R. Capone,et al.  Myocardial hemorrhage after coronary reperfusion in pigs. , 1978, The American journal of cardiology.

[4]  R. Helfant,et al.  Effects of Reperfusion on the Regional Contraction of Ischemic and Nonischemic Myocardium Following Partial Coronary Obstruction , 1978, Circulation.

[5]  H. Baur,et al.  Consequences of myocardial reperfusion following temporary coronary occlusion in pigs: effects on morphologic, biochemical and haemodynamic findings , 1977, European journal of clinical investigation.

[6]  H. Schamhardt,et al.  Influence of different anesthetics on myocardial performance and metabolism , 1977 .

[7]  W. Remme,et al.  Cardiovascular and antiarrhythmic effects of aprindine (AC1802) during partial occlusion of a coronary artery in the pig. , 1977, Cardiovascular research.

[8]  R. Capone,et al.  Free fatty acids and arrhythmias following acute coronary artery occlusion in pigs. , 1977, Cardiovascular research.

[9]  W. Remme,et al.  Myocardial nucleoside and carbohydrate metabolism and hemodynamics during partial occlusion and reperfusion of pig coronary artery. , 1977, Journal of molecular and cellular cardiology.

[10]  J. Schrader,et al.  Compartmentation of cardiac adenine nucleotides and formation of adenosine , 1976, Pflügers Archiv.

[11]  N. Brachfeld Characterization of the ischemic process by regional metabolism. , 1976, The American journal of cardiology.

[12]  J. Jarmakani,et al.  Effect of reperfusion on myocardial infarct, and the accuracy of estimating infarct size from serum creatine phosphokinase in the dog. , 1976, Cardiovascular research.

[13]  M. Rovetto,et al.  Mechanisms of Glycolytic Inhibition in Ischemic Rat Hearts , 1975, Circulation research.

[14]  K. Ichihara,et al.  Difference between endocardial and epicardial utilization of glycogen in the ischemic heart. , 1975, The American journal of physiology.

[15]  W. Tanner Methodon der enzymatischen Analyse, Hans Ulrich Bergmeyer (Ed.). Verl. Chemie, Weinheim (1974) , 1975 .

[16]  B. Rich,et al.  Biventricular dynamics during quantitated anteroseptal infarction in the porcine heart. , 1975, The American journal of cardiology.

[17]  S. Vatner,et al.  Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. , 1975, The Journal of clinical investigation.

[18]  L. Fu,et al.  Maximal rate of the left ventricular pressure fall (peak negative dP/dt) in early stage of myocardial ischemia following experimental coronary occlusion. , 1975, Japanese heart journal.

[19]  H. Wang,et al.  Experimental coronary arterial occlusion and release. Effects on enzymes, electrocardiograms, myocardial contractility and reactive hyperemia. , 1975, The American journal of cardiology.

[20]  P. S. Puri,et al.  Contractile and biochemical effects of coronary reperfusion after extended periods of coronary occlusion. , 1975, The American journal of cardiology.

[21]  J. E. Skinner,et al.  Modification of ventricular fibrillation latency following coronary artery occlusion in the conscious pig. , 1975, Circulation.

[22]  A. Liedtke,et al.  Metabolic responses to varying restrictions of coronary blood flow in swine. , 1975, The American journal of physiology.

[23]  D. E. Gregg Brief Reviews: The Natural History of Coronary Collateral Development , 1974 .

[24]  S. Goldstein,et al.  Changes in Coronary Venous Inosine Concentration and Myocardial Wall Thickening during Regional Ischemia in the Pig , 1974, Circulation research.

[25]  P. Libby,et al.  Coronary artery reperfusion. I. Early effects on local myocardial function and the extent of myocardial necrosis. , 1972, The Journal of clinical investigation.

[26]  E. Sonnenblick,et al.  Maximal rate of pressure fall (peak negative dP-dt) during ventricular relaxation. , 1972, Cardiovascular research.

[27]  C. Apstein,et al.  Improved automated lactate determination. , 1970, Analytical biochemistry.

[28]  R. Olsson Changes in Content of Purine Nucleoside in Canine Myocardium during Coronary Occlusion , 1970, Circulation research.

[29]  G. Gagnon,et al.  A COMPARATIVE STUDY IN THREE DIMENSION OF THE BLOOD SUPPLY OF THE NORMAL INTERVENTRICULAR SEPTUM IN HUMAN, CANINE, BOVINE, PROCINE, OVINE AND EQUINE HEART. , 1964, Diseases of the chest.

[30]  E. H. Estes,et al.  Titration of free fatty acids of plasma: a study of current methods and a new modification. , 1960, Journal of lipid research.

[31]  R. W. Eckstein Coronary Interarterial Anastomoses in Young Pigs and Mongrel Dogs , 1954, Circulation research.

[32]  D. Waters,et al.  Early changes in regional and global left ventricular function induced by graded reductions in regional coronary perfusion. , 1977, The American journal of cardiology.

[33]  H. Brooks,et al.  Biventricular Dynamics During Infarction in the Porcine Heart Quantitated Anteroseptal , 1975 .

[34]  C. Costantini,et al.  Consequences of reperfusion after coronary occlusion. Effects on hemodynamic and regional myocardial metabolic function. , 1974, The American journal of cardiology.

[35]  D. E. Gregg The natural history of coronary collateral development. , 1974, Circulation research.