Lyapunov-Based Control of Mechanical Systems

1 Introduction.- 1.1 Lyapunov-Based Control.- 1.2 Rigid Mechanical Systems.- 1.3 Flexible Mechanical Systems.- 1.4 Real-Time Control Implementation.- References.- 2 Control Techniques for Friction Compensation.- 2.1 Introduction.- 2.2 Reduced-Order Friction Model.- 2.3 Control Designs for Reduced-Order Model.- 2.3.1 Standard Adaptive Control.- 2.3.2 Modular Adaptive Control.- 2.3.3 Adaptive Setpoint Control.- 2.3.4 Experimental Evaluation.- 2.4 Full-Order Friction Model.- 2.5 Control Designs for Full-Order Model.- 2.5.1 Model-Based Control: Asymptotic Tracking.- 2.5.2 Model-Based Control: Exponential Tracking.- 2.5.3 Adaptive Control: Case.- 2.5.4 Adaptive Control: Case.- 2.5.5 Experimental Evaluation.- 2.6 Notes.- References.- 3 Full-State Feedback Tracking Controllers.- 3.1 Introduction.- 3.2 System Model.- 3.3 Problem Statement.- 3.4 Standard Adaptive Control.- 3.4.1 Controller Formulation.- 3.4.2 Stability Result.- 3.5 Desired Trajectory-Based Adaptive Control.- 3.5.1 Controller Formulation.- 3.5.2 Stability Results.- 3.5.3 Experimental Results.- 3.5.4 Nonadaptive Extensions.- 3.6 Control/Adaptation Law Modularity.- 3.6.1 Input-to-State Stability Result.- 3.6.2 Position Tracking Result.- 3.6.3 Experimental Results.- 3.6.4 Discussion of Results.- 3.7 Notes.- References.- 4 Output Feedback Tracking Controllers.- 4.1 Introduction.- 4.2 Problem Statement.- 4.3 Model-Based Observer/Control.- 4.3.1 Velocity Observer Formulation.- 4.3.2 Controller Formulation.- 4.3.3 Composite Stability Result.- 4.3.4 Experimental Results.- 4.4 Linear Filter-Based Adaptive Control.- 4.4.1 Filter Formulation.- 4.4.2 Controller Formulation.- 4.4.3 Composite Stability Result.- 4.4.4 Experimental Results.- 4.4.5 Nonadaptive Extensions.- 4.5 Nonlinear Filter-Based Adaptive Control.- 4.5.1 Filter/Controller Formulation.- 4.5.2 Composite Stability Result.- 4.5.3 OFB Form of Filter/Controller.- 4.5.4 Simulation Results.- 4.5.5 Extensions.- 4.6 Notes.- References.- 5 Strings and Cables.- 5.1 Introduction.- 5.2 Actuator-String System.- 5.2.1 System Model.- 5.2.2 Problem Statement.- 5.2.3 Model-Based Control Law.- 5.2.4 Adaptive Control Law.- 5.2.5 Extensions.- 5.2.6 Experimental Evaluation.- 5.3 Cable System.- 5.3.1 System Model.- 5.3.2 Problem Statement.- 5.3.3 Model-Based Control Law.- 5.3.4 Adaptive Control Law.- 5.3.5 Experimental Evaluation.- 5.4 Notes.- References.- 6 Cantilevered Beams.- 6.1 Introduction.- 6.2 Euler-Bernoulli Beam.- 6.2.1 System Model.- 6.2.2 Problem Statement.- 6.2.3 Model-Based Control Law.- 6.2.4 Adaptive Control Law.- 6.2.5 Extensions.- 6.2.6 Experimental Evaluation.- 6.3 Timoshenko Beam.- 6.3.1 System Model.- 6.3.2 Problem Statement.- 6.3.3 Model-Based Control Law.- 6.3.4 Adaptive Control Law.- 6.3.5 Simulation Results.- 6.4 Notes.- References.- 7 Boundary Control Applications.- 7.1 Introduction.- 7.2 Axially Moving String System.- 7.2.1 System Model.- 7.2.2 Problem Statement.- 7.2.3 Model-Based Control Law ..- 7.2.4 Adaptive Control Law.- 7.2.5 Experimental Evaluation.- 7.3 Flexible Link Robot Arm.- 7.3.1 System Model.- 7.3.2 Problem Statement.- 7.3.3 Model-Based Control Law.- 7.3.4 Adaptive Control Law.- 7.3.5 Experimental Evaluation.- 7.4 Flexible Rotor System.- 7.4.1 System Model.- 7.4.2 Problem Statement.- 7.4.3 Model-Based Control Law.- 7.4.4 Adaptive Control Law.- 7.4.5 Experimental Evaluation.- 7.5 Notes.- References.- Appendices.- A Mathematical Background.- References.- B Bounds for General Rigid Mechanical System.- References.- C Bounds for the Puma Robot.- References.- D Control Programs.- D.1 DCAL Controller.- D.2 Flexible Rotor.