Shaping the power spectra of bipolar sequences with application to sub-Nyquist sampling
暂无分享,去创建一个
A. Robert Calderbank | Waheed Uz Zaman Bajwa | Andrew Harms | A. Calderbank | W. Bajwa | Andrew Harms
[1] Roberto Padovani,et al. Spectral Analysis of Functions of Markov Chains with Applications , 1983, IEEE Trans. Commun..
[2] Justin K. Romberg,et al. Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.
[3] C.W. Bostian,et al. Analog to Digital Converters , 2020, Embedded Systems Design using the MSP430FR2355 LaunchPad™.
[4] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[5] Paul H. Siegel,et al. Codes for Digital Recorders , 1998, IEEE Trans. Inf. Theory.
[6] Yonina C. Eldar,et al. Xampling: Analog to digital at sub-Nyquist rates , 2009, IET Circuits Devices Syst..
[7] Paul H. Siegel,et al. The power spectrum of run-length-limited codes , 1989, IEEE Trans. Commun..
[8] Lalit R. Bahl,et al. Block Codes for a Class of Constrained Noiseless Channels , 1970, Inf. Control..
[9] A. Robert Calderbank,et al. A Constrained Random Demodulator for Sub-Nyquist Sampling , 2012, IEEE Transactions on Signal Processing.
[10] Robert Boorstyn,et al. Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.
[11] R.H. Walden. Analog-to-Digital Converters and Associated IC Technologies , 2008, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium.